[1]
J. P. ZHANG,P. LUO. Reverse engineer of cam contour based on B3 spline,J. mechanic and electronic, 2005(12): 13-15.
Google Scholar
[2]
Y. GAO ,S. L. XIE A complicated fiting based on the x spline,J. system simulation, 2001. 13(2): 163-165.
Google Scholar
[3]
J. L. WANG,Y. C. ZHANG. Mathematical treatment and error anylasis of displacement of cam J. mechanical design, 2006. 23(9): 59-60.
Google Scholar
[4]
M. JIANG,Z. H. GE. Reverse engineer of cylindrical cam based on CAD/cam,J. Machanic design, 2011. 28(5): 18-21.
Google Scholar
[5]
W. D. WANG. Reverse engineer of conjugate cam in textile machinery,J. Manufacturing automation, 2013. 34(23): 151-153.
Google Scholar
[6]
X. WU,Y. M. FU. Amendment of cam contour in reverse engineering J. Machine science and technology, 2012. 31(007): 1132-1135.
Google Scholar
[7]
F. YIN, et al. Back Propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding,J. Materials & design, 2011. 32(4): 1844-1850.
DOI: 10.1016/j.matdes.2010.12.022
Google Scholar
[8]
J. XIONG, et al. Forecasting process parameters for GMAW-based rapid manufacturing using closed-loop iteration based on neural network,J. The International Journal of Advanced Manufacturing Technology, 2013. 69(1-4): 743-751.
DOI: 10.1007/s00170-013-5038-2
Google Scholar
[9]
B. PRADHAN,S. LEE. Regional landslide susceptibility analysis using back-propagation neural network model at cameron Highland, Malaysia,J. Landslides, 2010. 7(1): 13-30.
DOI: 10.1007/s10346-009-0183-2
Google Scholar
[10]
S. GOYAL,G. K. GOYAL. Cascade and feedforward backpropagation artificial neural networks models for prediction of sensory quality of instant coffee flavoured sterilized drink,J. Canadian Journal on Artificial Intelligence, Machine Learning and Pattern Recognition, 2011. 2(6): 78-82.
DOI: 10.14201/adcaij201426913
Google Scholar
[11]
B. M. WILAMOWSKI,H. YU. Neural network learning without backpropagation,J. IEEE Transactions on Neural Networks, 2010. 21(11): 1793-1803.
DOI: 10.1109/tnn.2010.2073482
Google Scholar
[12]
A. GARG,K. TAI. Comparison of regression analysis, Artificial Neural Network and genetic programming in Handling the multicollinearity problem. in Modelling, Identification & Control (ICMIC), 2012 Proceedings of International Conference on. 2012. IEEE.
Google Scholar
[13]
Y. XIANG, et al. The Application of MATLAB Neural Network Algorithm in Short-term Hydrological Forecasting,J. Bridges, 2014. 10: 127.
Google Scholar
[14]
N. SIDDIQUE,H. ADELI. Appendix D: MATLAB® Programs for Neural Systems,J. Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, 2013: 461-471.
DOI: 10.1002/9781118534823.app4
Google Scholar
[15]
L. J. HU ,X. J. SUN, eds. MATLAB Higher education press: 2006, p.283.
Google Scholar
[16]
D. HUNTER, et al. Selection of proper neural network sizes and architectures—A comparative study,J. Industrial Informatics, IEEE Transactions on, 2012. 8(2): 228-240.
DOI: 10.1109/tii.2012.2187914
Google Scholar