[1]
Herroelen W, Leus R. Project scheduling under uncertainty: Survey and research potentials, European Journal of Operational Research, 2005, 165(2): 289-306.
DOI: 10.1016/j.ejor.2004.04.002
Google Scholar
[2]
Leon VJ, Wu SD, and Storer R H. Robustness measures and robust scheduling for job shops. IIE Transactions, 1994, 26(5): 32-43.
DOI: 10.1080/07408179408966626
Google Scholar
[3]
Kouvelis P, Yu D. Robust discrete optimization and its application. Kluwer Academic Publisher, (1997).
Google Scholar
[4]
Sabuncuoglu I, Goren S. Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research. International Journal of Computer Integrated Manufacturing 2009, 22: 138–57.
DOI: 10.1080/09511920802209033
Google Scholar
[5]
Wang B, Yang XF, and Li QY. Bad-scenario based robust scheduling model. Acta Automatica Sinica, 2012, 38(2): 275-283.
DOI: 10.3724/sp.j.1004.2012.00270
Google Scholar
[6]
Jensen MT. Generating robust and flexible job shop schedules using genetic algorithms. IEEE Transactions on Evolutionary Computation, 2003, 7(3): 275-288.
DOI: 10.1109/tevc.2003.810067
Google Scholar
[7]
Pinedo M. Minimizing the expected makespan in stochastic flow shops. Operations Research. 1982, 30: 148-162.
DOI: 10.1287/opre.30.1.148
Google Scholar
[8]
Assavapokee T, Realff MJ, Ammons JC, and Hong IH. Scenario relaxation algorithm for finite scenario-based min–max regret and min–max relative regret robust optimization. Computers & Operations Research, 2008, 35: 2093– 2102.
DOI: 10.1016/j.cor.2006.10.013
Google Scholar
[9]
Murvey JM, Vanderbei RJ, and Zenios SA. Robust optimization of large-scale systems. Operations Research, 1995, 43, 264-281.
DOI: 10.1287/opre.43.2.264
Google Scholar
[10]
Yamashita DS, Armentano VA, Laguna M. Robust optimization models for project scheduling with resource availability cost. Journal of Scheduling, 2007, 10: 67-76.
DOI: 10.1007/s10951-006-0326-4
Google Scholar
[11]
Daniels RL and Kouvelis P. Robust scheduling to hedge against processing time uncertainty in single-stage production. Management Science, 1995, 41: 363–376.
DOI: 10.1287/mnsc.41.2.363
Google Scholar
[12]
Kouvelis P, Daniels RL, Vairaktarakis G. Robust scheduling of a two-machine flow shop with uncertain processing times. IIE Transactions, 2000, 32: 421-432.
DOI: 10.1080/07408170008963918
Google Scholar
[13]
Laguna M, Lino P, P´erez A, Quintanilla S, and Valls V. Minimizing weighted tardiness of jobs with stochastic interruptions in parallel machines. European Journal of Operational Research, 2000, 127(2), 444–457.
DOI: 10.1016/s0377-2217(99)00495-6
Google Scholar
[14]
Goren S., Sabuncuoglu I. and Koc U. Optimization of Schedule Stability and Efficiency under Processing Time Variability and Random Machine Breakdowns in a Job Shop Environment. Naval Research Logistics, 2012, 59(1): 26-38.
DOI: 10.1002/nav.20488
Google Scholar
[15]
Van Laarhoven PJM, Aarts EHL, Lenstra JK. Job shop scheduling by simulated annealing. Operations Research 1992, 40(1): 113–25.
DOI: 10.1287/opre.40.1.113
Google Scholar
[16]
He Z, Yang T, Tiger A. An exchange heuristic imbedded with simulated annealing for due-dates job-shop scheduling. European Journal of Operational Research, 1996, 91(1): 99-117.
DOI: 10.1016/0377-2217(94)00361-0
Google Scholar
[17]
Steinhöfel K, Albrecht A, Wong C K. Two simulated annealing-based heuristics for the job shop scheduling problem. European Journal of Operational Research, 1999, 118(3): 524-548.
DOI: 10.1016/s0377-2217(98)00326-9
Google Scholar
[18]
Wang, L, Zheng, DZ. An effective hybrid optimization strategy for job-shop scheduling problems. Computers & Operations Research, 2001, 28: 585–596.
DOI: 10.1016/s0305-0548(99)00137-9
Google Scholar
[19]
Nowicki E, Smutnicki C. A Fast Taboo Search Algorithm for the Job Shop Problem. Management Science, 1996, 42(6): 797-813.
DOI: 10.1287/mnsc.42.6.797
Google Scholar
[20]
Fisher H, Thompson GL. Probabilistic-learning combinations of local job-shop scheduling rules, in: J. Muth, G. Thompson (Eds. ). Industrial Scheduling, Prentice-Hall, Englewood Cliffs, NJ, (1963).
DOI: 10.21236/ad0600965
Google Scholar
[21]
Wang B, Yang X F, and Li Q Y. Genetic simulated-annealing algorithm for robust job shop scheduling. Fuzzy Information and Engineering, Vol. 2: Advances in Intelligent and Soft Computing, 2009, 62: 817-827.
DOI: 10.1007/978-3-642-03664-4_89
Google Scholar