[1]
M. Lazar, H. Kirchner, Dislocation loops in anisotropic elasticity: displacement field, stress function tensor and interaction energy, Phil. Mag. 93 (2013) 174-185.
DOI: 10.1080/14786435.2012.657705
Google Scholar
[2]
D. Kuhlmann-Wilsdorf, The low energetic structures theory of solid plasticity, in: F.R.N. Nabarro, M.S. Duesbery (Eds. ), Dislocations in Solids, Elsevier, Amsterdam, 2002, pp.213-338.
Google Scholar
[3]
L. Kubin, B. Devincre and T. Hoc, Toward a physical model for strain hardening in fcc crystals, Mater. Sci. & Engng. 483-484 (2008) 19-24.
DOI: 10.1016/j.msea.2007.01.167
Google Scholar
[4]
D.J. Unger and E.C. Aifantis, Strain gradient elasticity theory for antiplane shear cracks. Part I, II, Theor. Appl. Fracture Mech. 34 (2000) 243-265.
DOI: 10.1016/s0167-8442(00)00042-2
Google Scholar
[5]
E.C. Aifantis, Gradient Plasticity, in: J. Lemaitre (Ed. ). Handbook of Materials Behavior Models, Academic Press, New York, 2001, pp.291-307.
Google Scholar
[6]
M. Zaiser and E.C. Aifantis, Randomness and slip avalanches in gradient plasticity, Int. J. Plasticity 22 (2006) 1432-1455.
DOI: 10.1016/j.ijplas.2005.07.010
Google Scholar
[7]
G. Z. Voyiadjis and D. Faghihi, Gradient Plasticity for Thermo-Mechanical Processes in Metals with Length and Time Scales, Phil. Mag. A 93 (2013) 1013-1053.
DOI: 10.1080/14786435.2012.740576
Google Scholar
[8]
P. Hahner and E. Rizzi, On the kinematics of Portevin- Le Chatelier bands: theoretical and numerical modelling, Acta Mat. 51 (2003) 3385-4018.
DOI: 10.1016/s1359-6454(03)00122-8
Google Scholar
[9]
L.B. Zuev, S.A. Barannikova, S. Yu. Zavodchikov, Localization of tensile deformation in a polycrystalline Zr-based alloy, Phys. Met. Metallogr. 87 (1999) 244-246.
Google Scholar
[10]
L.B. Zuev, V.I. Danilov, S.A. Barannikova, I.Y. Zykov, A new type of plastic deformation waves in solids, Appl. Phys. A 71 (2000) 91-94.
DOI: 10.1007/pl00021098
Google Scholar
[11]
L.B. Zuev, B.S. Semukhin, S.Y. Zavodchikov, Deformation localization and internal residual stresses in billets for Zr-Nb pipe rolling, Mater. Let. 57 (2002) 1015-1020.
DOI: 10.1016/s0167-577x(02)00916-3
Google Scholar
[12]
L.B. Zuev, V.I. Danilov, T.M. Poletika, S.A. Barannikova, Plastic deformation localization in commercial Zr-base alloys, Int. J. Plast. 20 (2004) 1227–1249.
DOI: 10.1016/j.ijplas.2003.05.003
Google Scholar
[13]
L.B. Zuev, V.I. Danilov, S.A. Barannikova, V.V. Gorbatenko, Autowave model of localized plastic flow of solids, Phys. Wav. Phen. 17 (2009) 1–10.
DOI: 10.3103/s1541308x09010117
Google Scholar
[14]
S.A. Barannikova, Dispersion of the plastic strain localization waves, Tech. Phys. Lett. 30 (2004) 338-340.
DOI: 10.1134/1.1748618
Google Scholar
[15]
S.A. Barannikova, Localization of stretching strain in doped carbon gamma-Fe single crystals, Tech. Phys. 45 (2000)1368-1370.
DOI: 10.1134/1.1318982
Google Scholar
[16]
L.B. Zuev and S.A. Barannikova, Evidence for the existence of localized plastic flow auto-waves generated in deforming metals, Natur. Sci. 2 (2010) 476-483.
DOI: 10.4236/ns.2010.25059
Google Scholar
[17]
L.B. Zuev and S.A. Barannikova, Plastic flow macrolocalization: autowave and quasi-particle, J. Mod. Phys. 1 (2010) 1-8.
DOI: 10.4236/jmp.2010.11001
Google Scholar
[18]
L.B. Zuev, V.I. Danilov and S.A. Barannikova, Plastic Flow Macrolocalization Physics, Nauka Publ., Novosibirsk, (2008).
Google Scholar
[19]
S. Yu. Zavodchikov, L.B. Zuev, V.A. Kotrekhov, Physical Metallurgy Problems Pertaining to Item Manufacture from Zirconium Alloys, Nauka, Novosibirsk, (2012).
Google Scholar
[20]
L.B. Zuev, V.V. Gorbatenko and K.V. Pavlichev, Elaboration of speckle photography techniques for plastic flow analyses, Measur. Sci. & Technol. 21 (2010) 054014: 1-5.
DOI: 10.1088/0957-0233/21/5/054014
Google Scholar
[21]
R. de Wit, Linear theory of static disclinations, in: J.A. Simmons, R. de Wit and R. Bullough (Eds. ), Fundamental Aspects of Dislocations, Spec. Publ. 317, Nat. Bur. Stand., New York, 1970. pp.651-673.
DOI: 10.6028/nbs.sp.317v2
Google Scholar