Synthesis of Highly Dispersed Pt Catalysts on MWCNTs via Hydrolytic Deposition without Preliminary Modification of the Support

Article Preview

Abstract:

Here we report that ethylene-derived multi-walled carbon nanotubes (MWCNTs) can be successfully used in the “as prepared” form for the synthesis of Pt/MWCNTs catalysts in aqueous solutions without the need in special wetting agents or specific treatments. The MWCNTs strongly accelerate the hydrolysis of metal precursor, thereby allowing rapid deposition of Pt oxide under mild conditions. Upon reduction, Pt nanoparticles with uniform distribution over the carbon surface can be obtained, the particle size (2-5 nm) being dependent on BET surface area of MWCNTs (120-350 m2/g) and Pt loading (5-30 wt.% of Pt relative to MWCNTs).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-404

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubes of graphitic carbon, Nature 354 (1991) 56-58.

Google Scholar

[2] M.S. Saha, R.Y. Li, X.H. Sun, High loading and monodispersed Pt nanoparticles on multiwalled carbon nanotubes for high performance proton exchange membrane fuel cells, J. Power Sources. 177, (2008) 314-322.

DOI: 10.1016/j.jpowsour.2007.11.036

Google Scholar

[3] B. Wu, Y. Kuang, X. Zhang, J. Chen, Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications. Nano Today 6 (2011) 75-90.

DOI: 10.1016/j.nantod.2010.12.008

Google Scholar

[4] A. Esmaeilifar, S. Rowshanzamir, M.H. Eikani, E. Ghazanfari, Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems. Energy 35 (2010) 3941-3957.

DOI: 10.1016/j.energy.2010.06.006

Google Scholar

[5] K.M. Kaprielova, O.A. Yakovina, I.I. Ovchinnikov, S.V. Koscheev, A.S. Lisitsyn, Preparation of platinum-on-carbon catalysts via hydrolytic deposition: Factors influencing the deposition and catalytic properties, Appl. Catal. A 449 (2012) 203–214.

DOI: 10.1016/j.apcata.2012.10.004

Google Scholar

[6] K.M. Kaprielova, I.I. Ovchinnikov, O.A. Yakovina, A.S. Lisitsyn. Synthesis of Pt/C Catalysts through Reductive Deposition: Ways of Tuning Catalytic Properties. ChemCatChem 5 (2013) 2015–(2024).

DOI: 10.1002/cctc.201200769

Google Scholar

[7] K. Elumeeva, M. Shuvaeva, V. Kuznetsov, A. Ischenko, N. Rudina, D.V. Krasnikov, A.N. Shmakov. Pechini Method derived Multi-component Metal Сatalysts for Multi-walled Carbon Nanotube Growth. 11th European Congress on Catalysis – EuropaCat-XI, Lyon, France, September 1-6, (2013).

Google Scholar

[8] W.A. Spieker, J. Liu, J.T. Miller, A.J. Kropf, J.R. Regalbuto, An EXAFS study of the co-ordination chemistry of hydrogen hexachloroplatinate(IV) 1. Speciation in aqueous solution. Appl. Catal. A 232 (2002) 219-235.

DOI: 10.1016/s0926-860x(02)00116-3

Google Scholar

[9] M.T. Reetz, M.G. Koch, Water-Soluble Colloidal Adams Catalyst: Preparation and Use in Catalysis. J. Am. Chem. Soc. 121 (1999) 7933-7934.

DOI: 10.1021/ja9906498

Google Scholar

[10] M.T. Reetz, M. Lopez, Method for in situ immobilization of water-soluble nanodispersed metal oxide colloids. US Patent 7244688 B2 (2007), to Studiengesellschaft Kohle mbH.

Google Scholar

[11] B. Fang, M. -S. Kim, J.H. Kim, M.Y. Song, Y. -J. Wang, H. Wang, D.P. Wilkinson, J. -S. Yu, High Pt loading on functionalized multiwall carbon nanotubes as a highly efficient cathode electrocatalyst for proton exchange membrane fuel cells. J. Mater. Chem. 21 (2011).

DOI: 10.1039/c1jm10847f

Google Scholar

[12] I. Kvande, J. Zhu, T. -J. Zhao, N. Hammer, M. Ronning, S. Raaen, J.C. Walmsley, D. Chen, Importance of Oxygen-Free Edge and Defect Sites for the Immobilization of Colloidal Pt Oxide Particles with Implications for the Preparation of CNF-Supported Catalysts. J. Phys. Chem. C 114 (2010).

DOI: 10.1021/jp906572z

Google Scholar

[13] T. Onoe, S. Iwamoto, M. Inoue. Synthesis and activity of the Pt catalyst supported on CNT. Catal. Commun. 8 (2007) 701–706.

DOI: 10.1016/j.catcom.2006.08.018

Google Scholar