[1]
A. El. Bartali, P. Evrard, V. Aubin, S. Herenu, I. Alvarez-Armas, A.F. Armas and S. Degallaix-Moreuil, Strain heterogeneities between phases in a duplex stainless steel. Comparison between measures and simulation, Procedia Engineering. 2 (2010).
DOI: 10.1016/j.proeng.2010.03.239
Google Scholar
[2]
J.M. Cabrera, A. Mateo, L. Llanes, J.M. Prado, M. Anglada, Hot deformation of duplex stainless steels, Journal of Materials Processing Technology 143–144 (2003) 321–325.
DOI: 10.1016/s0924-0136(03)00434-5
Google Scholar
[3]
R. Dakhlaoui, C. Braham, A. Baczmański, Mechanical properties of phases in austeno-ferritic duplex stainless steel – Surface stresses studied by X-ray diffraction, Mater. Sci. Eng. R. 444 (2007) 6–17.
DOI: 10.1016/j.msea.2006.06.074
Google Scholar
[4]
M. Faccoli, R. Roberti, Study of hot deformation behavior of 2205 duplex stainless steel through hot tension tests, J. Mater. Sci. 48 (2013) 5196–5203.
DOI: 10.1007/s10853-013-7307-8
Google Scholar
[5]
H. Farnousha, A. Momenia, K. Dehghania, J.А. Mohandesia, H. Keshmirib, Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases, Materials & Design. 31 (2010) 220–226.
DOI: 10.1016/j.matdes.2009.06.028
Google Scholar
[6]
E. Evangelista, P. Mengucci, J. Bowles, H.J. McQueen, Grain and subgrain structures developed by hot working in as-cast 434 stainless steel, High. Temp. Mater. Process. 12 (1993) 57–66.
DOI: 10.1515/htmp.1993.12.1-2.57
Google Scholar
[7]
P. Cizek, B.P. Wynne, Mechanism of a ferrite softening in a duplex stainless steel deformed in hot torsion, Mater. Sci. Eng. A. 230 (1997) 88–94.
DOI: 10.1016/s0921-5093(97)00087-7
Google Scholar
[8]
P.V. Trusov, V.N. Ashikhmin, P.S. Volegov, A.I. Shveykin, Constitutive relations and their application to the description of microstructure evolution, Physical Mesomechanics. 13 (2010) 38-46.
DOI: 10.1016/j.physme.2010.03.005
Google Scholar
[9]
P.V. Trusov, A.I. Shveykin, E.S. Nechaeva, P.S. Volegov, Multilevel models of inelastic deformation of materials and their application for description of internal structure evolution, Physical Mesomechanics. 15 (2012) 155-175.
DOI: 10.1134/s1029959912020038
Google Scholar
[10]
P.V. Trusov, Р.S. Volegov, A.I. Shveykin, Multilevel model of inelastic deformation of FCC polycrystalline with description of structure evolution, Computational Materials Science. 79 (2013) 429–441.
DOI: 10.1016/j.commatsci.2013.06.037
Google Scholar
[11]
P.V. Trusov, A.I. Shveikin Multilevel crystal plasticity models of single- and polycrystals. Statistical models, Physical Mesomechanics. 16 (2013) 17-28.
DOI: 10.1134/s1029959913010037
Google Scholar
[12]
P.V. Trusov, P.S. Volegov, A. Yu. Yanz, Two-level models of polycrystals: application to the analysis of the effects of complex loading, Physical Mesomechanics (in press).
DOI: 10.1134/s1029959914040122
Google Scholar
[13]
P.V. Trusov, P.S. Volegov, Internal variable constitutive relations and their application to description of hardening in single crystals, Physical Mesomechanics. 13 (2010) 152-158.
DOI: 10.1016/j.physme.2010.07.006
Google Scholar
[14]
N.S. Kondratev, P.V. Trusov, Description of hardening slip systems due to the boundaries of the crystallines in a polycrystalline aggregate PNRPU Mechanics Bulletin. 3 (2012) 78-97 (in Russian).
Google Scholar