[1]
P.V. Trusov, P.S. Volegov, A.I. Shveykin, Multilevel model of inelastic deformation of FCC polycrystalline with description of structure evolution, J. Computational Materials Science, 79 (2013), 429-441.
DOI: 10.1016/j.commatsci.2013.06.037
Google Scholar
[2]
Trusov, P.V., Shveykin, A.I., Nechaeva, E. S and Volegov, P.S., Multilevel models of inelastic deformation of materials and their application for description of internal structure evolution, Physical Mesomechanics. Tomsk: ISPMS SB RAS, 15(1) (2012).
DOI: 10.1134/s1029959912020038
Google Scholar
[3]
Rybin, V.V. High Plastic Srains and Fracture of Metals. –Moscow: Metallurgia, (1986).
Google Scholar
[4]
Koneva, N.A., Teplyakova, L. A, Kunitsina, T.S., and Kozlov, E. V., Influence of crystal orientation on dislocation structure evolution in the Ni3Fe alloy, Evolution of Structure and Property of Metal Materials, Ed.V.A. Starenchenko. Tomsk, NTL publishing house, 2007, 385-400.
Google Scholar
[5]
Teplyakova, L.A., Lychagin, D.V., and Bespalova, I.V., Mechanism of deformation macrolocalization in aluminum single crystals with loading axis orientation.
Google Scholar
[110]
Physical Mesomechanics. Tomsk: ISPMS SB RAS, 7(6) (2004), 63-78.
Google Scholar
[6]
Trusov, P.V., Shveykin, A.I.,. Nechaeva, E. S and Volegov, P.S., Asymmetric stress-strain measures in construction of multilevel constitutive models of materials, Physical Mesomechanics. – Tomsk: ISPMS SB RAS, 16(2) (2013), 15-31.
Google Scholar
[7]
Balasubramanian S., Anand L. Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures, J. Mech. and Phys. Solids, 50 (2002), 101–126.
DOI: 10.1016/s0022-5096(01)00022-9
Google Scholar
[8]
Montalvo-Urquizo J., Bobrov P., Schmidt A., Wosniok W. Elastic responses of texturized microscale materials using FEM simulations and stochastic material properties, Mechanics of Materials, 47 (2012), 1-10.
DOI: 10.1016/j.mechmat.2011.11.008
Google Scholar