Some Aspects of Computer Approaches to Simulation of Bimodal Sphere Packing in Material Engineering

Article Preview

Abstract:

This paper summarize idealized theoretical studies of bicomponent particle packing parameters, affecting the phase and pore structure of obtained materials. Such a kind of analysis can be used both in theoretical consideration of material engineering problems and in chemical industry. The effects of key variables on the relationship between packing fraction and particle size were re-examined for general application. Potential applications of these results include synthesis of nanopaterials, adsorbents, catalyst carriers and packing for chromatographic columns. Directions for future research are suggested.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

585-591

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Burtseva, A. Pestryakov, and V. Petranovskii, Monosized sphere packing approach in the nanoporous structure modeling, Strategic Technology (IFOST), 2012 7th International Forum on. (2012), 1-6.

DOI: 10.1109/ifost.2012.6357573

Google Scholar

[2] A. Mayoral, H. Barron, R. Estrada-Salas, A. Vazquez-Duran, and M. Jose-Yacaman, Nanoparticle stability from the nano to the meso interval, Nanoscale, Vol. 2, no. 3, (2010), 335-342.

DOI: 10.1039/b9nr00287a

Google Scholar

[3] P. Dubov, D. Korolkov, and V. Petranovskii, Klastery i matrichno-izolirovannye klasternye sverkhstruktury, St. Petersburg State University: Izd-vo S. -Peterburgkogo universiteta (1995).

Google Scholar

[4] G. E. Mueller, Numerically packing spheres in cylinders, Powder Technol., Vol. 159, no. 2, (2005), 105-110.

DOI: 10.1016/j.powtec.2005.06.002

Google Scholar

[5] C. C. Furnas, Grading Aggregates I-Mathematical Relations for Beds of Broken Solids of Maximum Density, Ind. Eng. Chem., Vol. 23, no. 9, (1931), 1052-1058.

DOI: 10.1021/ie50261a017

Google Scholar

[6] C. Marchal, Study of the Kepler's conjecture: the problem of the closest packing, Math. Z., Vol. 267, no. 3-4, (2011), 737-765.

DOI: 10.1007/s00209-009-0644-2

Google Scholar

[7] T. C. Hales, A proof of the Kepler conjecture, Ann. Math., Vol. 165, no. 3, (2005), 1065-1185.

DOI: 10.4007/annals.2005.162.1065

Google Scholar

[8] R. A. Rankin, The Closest Packing of Spherical Caps in n Dimensions, Glasgow Math. J., Vol. 2, no. 03, (1955), 139-144.

DOI: 10.1017/s2040618500033219

Google Scholar

[9] C. A. Rogers, The Packing of Equal Spheres, P. Lond. Math. Soc., Vol. 8, no. 4, (1958), 609-620.

Google Scholar

[10] H. J. H. Brouwers, Particle-size distribution and packing fraction of geometric random packings, Phy. Rev. E., Vol. 74, no. 3, (2006).

DOI: 10.1103/physreve.74.031309

Google Scholar

[11] K. d. L. Kristiansen, A. Wouterse, and A. Philipse, Simulation of random packing of binary sphere mixtures by mechanical contraction, Physica A: Statistical Mechanics and its Applications, Vol. 358, no. 2–4, (2005), 249-262.

DOI: 10.1016/j.physa.2005.03.057

Google Scholar

[12] A. Bezrukov, D. Stoyan, and M. Bargieł, Spatial statistics for simulated packings of spheres, Image Anal Stereol, Vol. 20, no. 3, (2001), 203-206.

DOI: 10.5566/ias.v20.p203-206

Google Scholar

[13] H. N. Lalena, Principles of Inorganic Materials Design: John Wiley & Sons, (2010).

Google Scholar

[14] S. Jeong, W. Sangbok, S. Kang, and J. Park, A batch splitting heuristic for dynamic job shop scheduling problem, Comput. Ind. Eng., Vol. 33, no. 3-4, (1997), 781-784.

DOI: 10.1016/s0360-8352(97)00252-0

Google Scholar

[15] M. L. Mansfield, L. Rakesh, and D. A. Tomalia, The random parking of spheres on spheres, J. Chem, Phys, Vol. 105, (1996), 3245-3249.

DOI: 10.1063/1.472166

Google Scholar

[16] G. Y. Onoda, and E. G. Liniger, Random loose packings of uniform spheres and the dilatancy onset, Phys Rev Lett, Vol. 64, no. 22, (1990), 2727-2730.

DOI: 10.1103/physrevlett.64.2727

Google Scholar

[17] V. A. Luchnikov, M. L. Gavrilova, N. N. Medvedev, and V. P. Voloshin, The Voronoi–Delaunay approach for the free volume analysis of a packing of balls in a cylindrical container, Future Gener. Comp., Vol. 18, no. 5, (2002), 673-679.

DOI: 10.1016/s0167-739x(02)00032-8

Google Scholar

[18] M. Bargieł, and J. Mościński, C-language program for the irregular close packing of hard spheres, Comput. Phys. Commun., Vol. 64, no. 1, (1991), 183-192.

DOI: 10.1016/0010-4655(91)90060-x

Google Scholar

[19] D. He, N. N. Ekere, and L. Cai, Computer simulation of random packing of unequal particles, Phy. Rev. E., Vol. 60, no. 6, (1999), 7098-7104.

DOI: 10.1103/physreve.60.7098

Google Scholar

[20] A. R. Kansal, S. Torquato, and F. H. Stillinger, Computer generation of dense polydisperse sphere packings, J. Chem. Phys., Vol. 117, no. 18, (2002), 8212-8218.

DOI: 10.1063/1.1511510

Google Scholar

[21] M. D. Webb, and I. L. Davis, Random particle packing with large particle size variations using reduced-dimension algorithms, Powder Technol., Vol. 167, no. 1, (2006), 10-19.

DOI: 10.1016/j.powtec.2006.06.003

Google Scholar