[1]
D.R. Acosta, A. Martinez, C.R. Magana, J.M. Ortega, Electron and Atomic Force Microscopy Studies of Photocatalytic Titanium Dioxide Thin Films Deposited by DC Magnetron Sputtering, Thin Solid Films 490 (2005) 112-117.
DOI: 10.1016/j.tsf.2005.04.067
Google Scholar
[2]
M. Lilja, K. Welch, M. Astrand, H. Engqvist, M. Stromme, Effect of Deposition Parameters on the Photocatalytic Activity and Bioactivity of TiO2 Thin Films Deposited by Vacuum Arc on Ti-6Al-4V Substrates, Journal of Biomedical Materials Research B: Applied Biomaterials 100B (2012).
DOI: 10.1002/jbm.b.32674
Google Scholar
[3]
S. Worasukhkhung, S. Pudwat, P. Eiamchai, M. Horprathum, S. Dumrongrattana, K. Aiempanakit, Hydrophilic Property of TiO2 Films Sputtered on Glass/ITO for Self-Cleaning Glass and Heat Mirror Application, Procedia Engineering 32 (2012) 780-786.
DOI: 10.1016/j.proeng.2012.02.012
Google Scholar
[4]
B.S. Richards, Single-Material TiO2 Double-Layer Antireflection Coatings, Solar Energy Materials & Solar Cells 79 (2003) 369-390.
DOI: 10.1016/s0927-0248(02)00473-7
Google Scholar
[5]
C.X. Shan, X. Hou, K. -L. Choy, P. Choquet, Improvement in Corrosion Resistance of CrN Coated Stainless Steel by Conformal TiO2 Deposition, Surface & Coatings Technology 202 (2008) 2147-2151.
DOI: 10.1016/j.surfcoat.2007.08.078
Google Scholar
[6]
Y. Liu., X. Wang, F. Yang, X. Yang, Excellent Antimicrobial Properties of Mesoporous Anatase TiO2 and Ag/TiO2 Composite Films, Microporous and Mesoporous Materials 114 (2008) 431-439.
DOI: 10.1016/j.micromeso.2008.01.032
Google Scholar
[7]
Y. Liu, C. Wang, X. Diao, Y. Xue, Optimization of the Thickness of Glass/TiO2/Ag/Ti/TiO2/SiON Multilayer Film, Vacuum 86 (2012) 2040-(2043).
DOI: 10.1016/j.vacuum.2012.04.044
Google Scholar
[8]
P. Baroch, J. Musil, J. Vlcek, K.H. Nam, J.G. Han, Reactive Magnetron Sputtering of TiOx Films, Surface & Coatings Technology 193 (2005) 107–111.
DOI: 10.1016/j.surfcoat.2004.07.060
Google Scholar
[9]
D. Delpha, J. Haemers, R. De Hryse, Discharge Voltage Measurements during Reactive Sputtering of Oxides, Thin Solid Films 515 (2006) 468-471.
DOI: 10.1016/j.tsf.2005.12.256
Google Scholar
[10]
K. Tominaga, T. Kikuma, Energetic Oxygen Ions in the Reactive Sputtering of the Zr Target in Ar+O2 Atmosphere, J. Vac. Sci. Technol. A 19 (2001) 1582-1585.
DOI: 10.1116/1.1368664
Google Scholar
[11]
K. Tominaga, D. Ito, Y. Miyamoto, Energetic Negative Ions in Titanium Oxide Deposition by Reactive Sputtering in Ar/O2, Vacuum 80 (2006) 654-657.
DOI: 10.1016/j.vacuum.2005.11.007
Google Scholar
[12]
Y.N. Yurjev, D.V. Sidelev, Technological Peculiarities of Deposition Anti-Reflective Layers in Low-E Coatings, Journal of Physics: Conference Series 479 (2013) 012018.
DOI: 10.1088/1742-6596/479/1/012018
Google Scholar
[13]
Y.N. Yurjev, D.V. Sidelev, V.P. Krivobokov, Opticheskie Svoistva Tonkix Plenok Diokcida Titana, Izv. Vuz. Physics 56 (2013) 350-354 [in Russian].
Google Scholar
[14]
D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, On the Structural Properties and Optical Transmittance of TiO2 R.F. Sputtered Thin Films, Applied Surface Science 156 (2000) 200-206.
DOI: 10.1016/s0169-4332(99)00508-5
Google Scholar
[15]
H.P. Deshmukh, P.S. Shinde, P.S. Patil, Structural, Optical and Electrical Characterization of Spray-Deposited TiO2 Thin Films, Materials Science and Engineering B 130 (2006) 220-227.
DOI: 10.1016/j.mseb.2006.03.016
Google Scholar
[16]
J.D. DeLoach, G. Scarel, C.R. Aita, Correlation between Titania Film Structure and Near Ultraviolet Optical Absorption, J. Appl. Phys. 85(1999) 2377.
DOI: 10.1063/1.369553
Google Scholar