A Prototype of Magnetic Actuator Based on Generalized Magnetoelectric Phenomena: Experiments and Analysis

Article Preview

Abstract:

This paper reports on a prototype of magnetic actuator which is based on generalized magnetoelectric (ME) phenomena. The tested sample was made up of a vertical piezoelectric bender coated with a silver plate and electric wire. Due to the coupling of the piezoelectric layer and Lorentz force in the metal part of the sample, piezoelectric bender’s torsion deformation can be induced by Lorentz force, and thus piezoelectric voltage appeared on the sample. Then, generalized magnetoelectric effect appeared when ac magnetic flux was across the thickness of the beam. Finally, without applying a power source on the specimen, a room temperature magnetic field actuator can be developed by using this piezoelectric beam, from which magnetoelectric voltage coefficient as high as 81.8 mV/cm-Oe can be obtained. In the experiments, the magnetoelectric voltage of piezoelectric beam can be controlled by adjusting ac current, so it is promising to be put into the application of magnetic field sensing and actuating technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

253-257

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Fiebig: J. Phys. D: Appl. Phys. Vol. 38 (2005) , p. R123.

Google Scholar

[2] G. Harse, J.P. Dougherty and R.E. Newnham: Int. J. Appl. Electromagn. Mater. Vol. 4 (1993) , p.161.

Google Scholar

[3] C. W. Nan: Phys. Rev. B. Vol. 50 (1994) , p.6082.

Google Scholar

[4] L. Fuentes, M. Garcia, J. Matutes-Aquino. D. Rios-Jara: J. Alloys Compd. Vol. 369 (2004) , pp.10-13.

Google Scholar

[5] V. Suchetelene: Philips. Res. Rep Vol. 27 (1972) , p.28.

Google Scholar

[6] D. Guyomar, D.F. Matei, Q. Le, B. Guiffard, and R. Belouadah: Mater. Lett. Vol. 63 (2009), p.611.

Google Scholar

[7] S. Dong, J. F. Li and D. Viehland: IEEE trans. Ultrason. Ferroelectr. Freq. Control, Vol. 51 (2004) , p.793.

Google Scholar

[8] J. Zhai, J. F. Li, D. Viehland and M. I. Bichurin: J. Appl. Phys. Vol. 101 (2007) , pp.014102-1.

Google Scholar

[9] B. Guiffard, D. Guyomar, L. Garbuio, R. Belouadah, J.W. Zhang, and P-J. Cottinet: Appl. Phys. Lett, Vol. 96 (2010) , p.044105.

DOI: 10.1063/1.3298551

Google Scholar

[10] D. Guyomar, B. Guiffard, R. Belouadah, and L. Petit: J. Appl. Phys. Vol. 104, (2008) p.074902.

Google Scholar

[11] B. Guiffard, J. W. Zhang, D. Guyomar, L. Garbuio, P. -J. Cottinet and R. Belouadah: J. Appl. Phys. Vol. 108 (2010) , p.094901.

DOI: 10.1063/1.3503424

Google Scholar

[12] J. Ryu, A. V. Carazo, K. Uchino and H-E Kim: Jpn. J. Appl. Phys. Vol. 40, pp.4948-4951, (2001).

Google Scholar

[13] S. Narendra Babu, T. Bhimasankaram and S. V. Suryanarayana: Bull. Mater. Sci. Vol. 28 (2005) , p.419.

Google Scholar

[14] R. C Kambale, P. A. Shaikh, C.H. Bhosale, K. Y. Rajpure and Y. D. Kolekar: J. Alloys and Compounds. Vol. 489 (2010) , p.310.

DOI: 10.1016/j.jallcom.2009.09.080

Google Scholar

[15] G. V. Duong, R. S. Turtelli and R. Groessinger: J. Magn. Magn. Mater . Vol. 322 (2010) , p.1581.

Google Scholar