A Study of LiMn(2-X)FexO4 Cathodic Nano Material for Lithium-Ion Batteries

Article Preview

Abstract:

LiMn1.5Fe0.5O4 is synthesized using sol-gel method and annealed at 850°C for 24 hours. It is then characterized using X-ray diffraction (XRD) and charge discharge analysis. The bulk material are then proceed to further grinding to become nanosize. The nanosample is then characterized using XRD and charge discharge performance, and the specific capacities of the two materials are compared. nanosample of LiMn1.5Fe0.5O4 shows higher specific capacity which is 160.16 mAhg-1 compares to the bulk which gives only 128.663mAhg-1. This shows that with smaller particle size, the battery performance has improved in terms of its capacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-11

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Broussely,G. Arcdale, J. Power Sources Vol. 136 (2004) pp.386-394.

Google Scholar

[2] A.G. Ritchie, J. Power Sources Vol. 136 (2004) pp.285-289.

Google Scholar

[3] C. P. Vicente, J. M. Lloris, J.L. Tirado, Electrochim. Acta Vol. 49 (2004) p.1963-(1967).

Google Scholar

[4] Y.T. Lee, C. S. Yoon, Y.S. Lee, Y.K. Sun, J. Power Sources Vol. 134 (2004) pp.88-94.

Google Scholar

[5] H.J. Bang, V.S. Donepudi, J. Prakash, Electrochim. Acta Vol. 48 (2002) pp.443-451.

Google Scholar

[6] D. Li,T. Muta,H. Noguchi, J. Power Sources Vol. 135 (2004) pp.262-266.

Google Scholar

[7] E. Wolska, P. Piszora, K. Stempin, C.R.A. Catlow, Journal of Alloys and Compounds Vol. 286 (1999) pp.203-207.

DOI: 10.1016/s0925-8388(98)01007-x

Google Scholar

[8] X.M. Wu, X.H. Li, Y.H. Zhang, M.F. Xu, Z.Q. He, Materials Letter Vol. 58 (2004) pp.1227-1230.

Google Scholar

[9] T. Ohzuku, K. Nakura, T. Aoki, "Electrochim. Acta Vol. 45 (1999) pp.151-160.

Google Scholar

[10] T. Ohzuku, T. Yanagawa, M. Kouguchi, A. Ueda, J. Power Sources Vol. 68 (1997) pp.131-134.

Google Scholar

[11] S.H. Choi, J. Kim, Y.S. Yoon, J. Power Sources Vol. 138 (2004), pp.283-287.

Google Scholar

[12] B. Markovsky, A. Nimberger, Y. Talyosef, A. Rodkin, A. M. Belostotskii, G. Salitra, D. Aurbach H.J. Kim, J. Power Sources Vol. 136(2004) pp.296-302.

DOI: 10.1016/j.jpowsour.2004.04.017

Google Scholar

[13] A. D. Robertson, A.R. Armstrong, P.G. Bruce, Journal of Power Sources, Vol. 97-98(2001) pp.332-335.

Google Scholar

[14] E. Zhecheva, R. Stoyanova, M. Gorova, P. Lavela, J. L. Tirado, Solid State Ionics, Vol. 140(2001) pp.19-33.

Google Scholar