Effect of CNT Arrays on Electrical and Thermal Conductivity of Epoxy Resins

Article Preview

Abstract:

With the development of electronic technology, thermal interface materials (TIMs) of excellent thermal conductivity have been desired for circuit integration. In this study, carbon nanotube arrays (CNTAs) were utilized to prepare high thermal conductive composites by infiltration into epoxy resin. The composite was cured in a drying oven at 60 °C for 4 h. The thermal conductivity of the composite along axial direction reaches 2.24 W/mK at 120 oC, which is about 10 times of that of pure epoxy resin. The results indicated that the great promise of epoxy/CNTA composites as thermal interface materials. However, the electrical conductivity still remains at a low level, although it is increased by orders of magnitudes, the insulativity is beneficial for the application of this composite in electrical industry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-30

Citation:

Online since:

October 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Berber, Y. Kwon and D. Tománek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84 (2000) 4613-4616.

DOI: 10.1103/physrevlett.84.4613

Google Scholar

[2] P. Kim, L. Shi, A. Majumda and P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87 (2001) 215502.

DOI: 10.1103/physrevlett.87.215502

Google Scholar

[3] M. Fujii, X. Zhang, H. Xie et al., Measuring the thermal conductivity of a single carbon nanotube, Phys. Rev. Lett. 95 (2005) 065502.

Google Scholar

[4] C. Guthy, F. Du, S. Brand et al., Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites, Trans. ASME 129 (2007) 1096-1099.

DOI: 10.1115/1.2737484

Google Scholar

[5] L. E. Nielsen, The thermal and electrical conductivity of two-phase systems, Ind. Eng. Chem. Fundam. 13 (1974) 17-20.

Google Scholar

[6] R. Haggenmuller, C. Guthy, J. R. Lukes et al., Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity, Macromol. 40 (2007) 2417-2421.

DOI: 10.1021/ma0615046

Google Scholar

[7] F. H. Gojny, M. H. G. Wichmann, B. Fiedler et al., Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polym. 47 (2006) 2036-(2045).

DOI: 10.1016/j.polymer.2006.01.029

Google Scholar

[8] K. Yang, M. Gu, Y. Guo, X. Pan, G. Mu, Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites, Carbon 47 (2009) 1723-1737.

DOI: 10.1016/j.carbon.2009.02.029

Google Scholar

[9] X. Xu, M.M. Thwe, C. Shearwood and K. Liao, Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films, Appl. Phys. Lett. 81 (2002) 2833-2835.

DOI: 10.1063/1.1511532

Google Scholar

[10] F. El-Tantawy, K. Kamada and H. Ohnabe, In situ network structure, electrical and thermal properties of conductive epoxy resin-carbon black composites for electrical heater applications, Matter. Lett. 56 (2002) 112-126.

DOI: 10.1016/s0167-577x(02)00401-9

Google Scholar

[11] Z. Han and A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review, Prog. Polym. Sci. 36 (2011) 914-944.

DOI: 10.1016/j.progpolymsci.2010.11.004

Google Scholar

[12] P. Dashora and G. Gupta, On the temperature dependence of the thermal conductivity of linear amorphous polymers, Polym. 37 (1996) 231-234.

DOI: 10.1016/0032-3861(96)81092-5

Google Scholar

[13] N. Jović, D. Dudić, A. Montone et al., Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheets composites, Scripta Materialia 58 (2008) 846-849.

DOI: 10.1016/j.scriptamat.2007.12.041

Google Scholar