Fabrication of ZnO Nanorod for Room Temperature NO Gas Sensor

Article Preview

Abstract:

One dimensional ZnO nanorod has been extensively studied in sensor application due to its unique properties in direct energy band gap and high binding energy. In this report, ZnO nanorod arrays were synthesized via hydrothermal approach. Highly oriented (002) nanorods array with diameter of (22.42 ± 1.40) nm was successfully grown on the quartz surface. A low cost and room temperature optical based NO sensor was introduced. ZnO nanorods array show a high sensitivity upon the NO gas which is 20.1 % within 3 minutes. This newly established method can be potentially used in detection of other toxicity gas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-100

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Qiao, Y. Zeng, C. Qu, H. Zhang, X. Hu, L. Song, D. Bi and S. Liu: Physica E Vol. 48 (2013), pp.7-12.

Google Scholar

[2] P. Nizamidin, A. Yimit, A. Abdurrahman and K. Itoh: Sensor. Actuat. B- Chem. Vol. 176 (2013), pp.460-466.

Google Scholar

[3] C. -H. Hsu, C. -C. Chang, C. -M. Tseng, C. -C. Chan, W. -H. Chao, Y. -R. Wu, M. -H. Wen, Y. -T. Hsieh, Y. -C. Wang and C. -L. Chen: Sensor. Actuat. B- Chem. Vol. 186 (2013), pp.193-198.

Google Scholar

[4] B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar and A. C. Bose: Sensor. Actuat. B- Chem. Vol. 156 (2011), pp.263-270.

Google Scholar

[5] O. Lupan, L. Chow, L. K. Ono, B. R. Cuenya, G. Chai, H. Khallaf, S. Park and A. Schulte: J. Physc. Chem. C Vol. 114 (2010), pp.12401-12408.

DOI: 10.1021/jp910263n

Google Scholar

[6] G. Brambilla: Optical Fiber Technology Vol. 16 (2010), pp.331-342.

Google Scholar

[7] W. Jin, H. Ho, Y. Cao, J. Ju and L. Qi: Opt. Fiber Technol. Vol. 19 (2013), pp.741-759.

Google Scholar

[8] H. -J. Nam, T. Sasaki and N. Koshizaki: J. Phys. Chem. B Vol. 110 (2006), pp.23081-23084.

Google Scholar

[9] S. T. Tan, A. A. Umar, A. Balouch, M. Yahaya, C. C. Yap, M. M. Salleh and M. Oyama: Ultrason. Sonochem. Vol. 21 (2014), pp.754-760.

Google Scholar

[10] L. Zbroniec, A. Martucci, T. Sasaki and N. Koshizaki: Appl. Phys. A Vol. 79 (2004), pp.1303-1305.

Google Scholar

[11] B. Ruhland, T. Becker and G. Müller: Sensor. Actuat. B- Chem. Vol. 50 (1998), pp.85-94.

Google Scholar

[12] H. -J. Lim, D. Y. Lee and Y. -J. Oh: Sensor. Actuat. A- Physc. Vol. 125 (2006), pp.405-410.

Google Scholar

[13] M. J. S. Spencer and I. Yarovsky: J. Physc. Chem. C. Vol. 114 (2010), pp.10881-10893.

Google Scholar

[14] P. Hanrahan and W. Krueger: P. Comp. ACM (1993), pp.165-174.

Google Scholar

[15] Y. Qian and H. Sun: Opt. Express. Vol. 19 (2011), pp.739-747.

Google Scholar