Synthesized and Preparation of Side Chains Containing Nitrogen Atoms Sulfonated Polyimide Membranes

Article Preview

Abstract:

To improve the performance of sulfonated polyimide (SPI) membrane, especially to heighten water stability. A side chains containing nitrogen atoms sulfonated diamine monomer, 2,5-two (dimethyl amino methylene)-1,4-((paraamino) phenyl) benzene (DMAPB), was synthesized. A series of sulfonated polyimide (SPI) were prepared from DMAPB, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and sulfonated diamine (ODADS). The effects of side chains containing nitrogen atoms on SPI membrane are investigated. The basic nitorgen atom introduced in the side chains could effectively resist membrane swelling due to the strong interchain interactions through basic nitorgen atom and sulfonic acid groups. The copolymer SPI 40 showed higher water stability, it could maintain mechanical strength after being soaked in 100 °C liquid water for more than 1000 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-42

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath. Chem. Rev. Vol. 104 (2004), p.4587.

Google Scholar

[2] V. Mehta, J. S. Cooper. J. Power Sources Vol. 114 (2003), p.32.

Google Scholar

[3] F. Barbir, T. Gomez. J. Hydrogen Energy Vol 22 (1997), p.1027.

Google Scholar

[4] M. A. Hickner, H. Ghassemi, Y. S. Kim, J. E. McGrath, Chem. Rev. Vol. 104 (2004), p.4587.

Google Scholar

[5] C. Genies, R. Mericer, R. Petiaud, N. Cornet, G. Gebel, M. Pineri, Polymer Vol. 42 (2001), p.5097.

DOI: 10.1016/s0032-3861(00)00645-5

Google Scholar

[6] K. Miyatake, Y. Chikashige, M. Watanabe, J. Am. Chem. Soc. Vol. 129 (2007), p.3879.

Google Scholar

[7] D. S. Kim, K. H. Shin, H. B. Park, Y. S. Chung, Y. M. Lee, J. Membr. Sci. Vol. 278 (2006), p.428.

Google Scholar

[8] J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K. Okamoto, Macromolecules Vol. 35 (2002), p.9022.

Google Scholar

[9] X. Guo, J. Fang, T. Watari, K. Tanaka, H. Kita, K. Okamoto, Macromolecules Vol. 35 (2002), p.6707.

Google Scholar

[10] K. Miyatake, H. Zhou, M. Watanabe, Macromolecules Vol. 37 (2004), p.4956.

Google Scholar

[11] W. Jang, S. Sundar, S. Choi, Y. G. Shul, H. Han, J. Membr. Sci. Vol. 280 (2006), p.321.

Google Scholar

[12] T. Chakrabarty, A. Jasti, N. K. Goel, V. K. Shahi, S. Sabharwal, Radiation Physics and Chemistry Vol. 80 (2011), p.803.

Google Scholar

[13] V. Neburchilov, J. Martin, H.J. Wang, J.J. Zhang, J. Power Sources Vol. 169 (2007) p.221.

Google Scholar

[14] J. A. Kerres, Fuel Cells Vol. 5 (2005) p.230.

Google Scholar

[15] Y. Gau, G.P. Robertson, M.D. Guiver, X. Jian, S.D. Mikhailenko, S. Kaliaguine, Solid State Ionics Vol. 176 (2005) p.409.

DOI: 10.1016/j.ssi.2004.08.009

Google Scholar

[16] W. Jang, S. Sundar, S. Choi, Y.G. Shul, H. Han, J. Membr. Sci. Vol. 280 (2006) p.321.

Google Scholar