Research Progress on Finite Element Analysis Methods for Bonded Joints at Different Strain Rates

Article Preview

Abstract:

Adhesive bonding is one of the effective ways to reduce the weight of structures. Researchers have done lots of numerical analysis and finite element analysis taking into account of the complex stress state in the bonded area, as well as the stress singularity occurs at the overlap edges with a view to efficiently predict the strength and rigidity of adhesively bonded joints. As they may suffer shock or impact loads in practice which leads to high strain rate in structures, analysis methods for adhesively bonded joints differ from that at quasi-static condition for two reasons: one is the mechanical properties of materials, including adhesives and substrates are different at high strain rates, the other is the additional consideration of elastic wave propagation in solid body. This article summaries several finite element analysis methods for adhesively bonded joints at high strain rate developed by domestic and foreign scholars and corresponding experimental standards for determining required parameters of each analytical method and raised some questions that need for further study.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1049-1050)

Pages:

892-900

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Silva L.F.M.D., Modelling of Adhesively Bonded joints. [M] Springer-Verlag Berlin Heidelberg, (2008).

Google Scholar

[2] Lucas F.M. da Silva, Paulo J.C. das Neves, R.D. Adams, J.K. Spelt. Analytical models of adhesively bonded joints—Part I: Literature survey [J]. International Journal of Adhesion & Adhesives 29(2009)319-330.

DOI: 10.1016/j.ijadhadh.2008.06.005

Google Scholar

[3] R.D. Adams, J. Comyn, W.C. Wake, Structural Adhesive Joints in Engineering, 2nd edn. Chapman & Hall, London, (1997).

Google Scholar

[4] Adams RD, Peppiatt NA. [J]. Adhesion 1977; 9(1): 1.

Google Scholar

[5] Adams RD, Coppendale J, Peppiatt NA. [J]. Strain Anal Engineering Des 197813(1): 1.

Google Scholar

[6] Adams RD, Peppiatt NA, Coppendale [J]. IPC Science Technology Press 1978: 64–78.

Google Scholar

[7] Crocombe AD, Adams RD [J]. Adhesion 1982: 13(3–4): 241.

Google Scholar

[8] Xiaocong He, A review of finite element analysis of adhesively bonded joints, [J]. International Journal of Adhesion & Adhesives 31 (2011) 248–264.

DOI: 10.1016/j.ijadhadh.2011.01.006

Google Scholar

[9] Progress on finite element analysis methods for Composite bonding structure [J]. Advances in Mechanics 2012 (5) 562-571.

Google Scholar

[10] Xiao X, Foss PH, Schroeder JA. Stiffness prediction of the double-lap shear joints Part 2: Finite element modeling [J]. International Journal of Adhesion & Adhesives, 2004, 24(3): 239-246.

DOI: 10.1016/j.ijadhadh.2003.10.004

Google Scholar

[11] Al-Samhan A, Darwish SMH. Finite element modeling of weld-bonded joints[J]. Journal of Materials Processing Technology, 2003, 142(3): 587-598.

DOI: 10.1016/s0924-0136(02)01015-4

Google Scholar

[12] Kitagawa H, Yoshida Y, Kanagawa H. A study of bending and torsional rigidities of weld-bonded structure [J]. JSAE Review, 1992, 13(4): 72-76.

Google Scholar

[13] Wu G, Crocombe AD. Simplified finite element modeling of structural adhesive joints[J]. Computers and Structures 1996, 61(2): 385-391.

DOI: 10.1016/0045-7949(96)00101-0

Google Scholar

[14] Jianping Lu, Golam M. Newaz , Ronald F. Gibson. The role of adhesive in the mechanical response of adhesively bonded aluminum hat sections under axial compression loads [J]. International Journal of Solids and Structures 41 (2004) 4757–4767.

DOI: 10.1016/j.ijsolstr.2004.02.042

Google Scholar

[15] S. Feih, H.R. Shercliff. Adhesive and composite failure prediction of single-L joint structures under tensile loading [J] International Journal of Adhesion & Adhesives 25 (2005) 47–59.

DOI: 10.1016/j.ijadhadh.2004.02.005

Google Scholar

[16] A.D. Crocombe, Global yielding as a failure criteria for bonded joints. [J]. International Journal of Adhesion & Adhesives, 1989 9 145–153.

DOI: 10.1016/0143-7496(89)90110-3

Google Scholar

[17] L.F.M. da Silva, A. Öchsner, R.D. Adams (eds. ), [M] Handbook of Adhesion Technology Springer, Heidelberg, (2011).

Google Scholar

[18] Chang-Su Ban, Young-Hwan Lee, Jin-Ho Choi Jin-Hwe Kweon. Strength prediction of adhesive joints using the modified damage zone theory Composite Structures [J] 2008 86 96–100.

DOI: 10.1016/j.compstruct.2008.03.016

Google Scholar

[19] Towse A, Davies RGH, Clarke A, Wisnom MR, Adams RD, Potter KD (1997).

Google Scholar

[20] X. Zhao, R.D. Adams, L.F.M. da Silva, Single lap joints with rounded adherend corners: experimental results and strength prediction. [J]. Adhesion. Science and Technology. 2011 25, 837–856.

DOI: 10.1163/016942410x520880

Google Scholar

[21] Vaidya UK, Gautam ARS, Hosur M, Dutta P. J. International Journal of Adhesion & Adhesives 2006; 26(3): 184-198.

Google Scholar

[22] N. Choupani, Interfacial mixed-mode fracture characterization of adhesively bonded joints. [J]. International Journal of Adhesion & Adhesives. 2008 28, 267–282.

DOI: 10.1016/j.ijadhadh.2007.08.002

Google Scholar

[23] M.D. Banea, L.F.M. da Silva, R.D.S.G. Campilho, Temperature dependence of the fracture toughness of adhesively bonded joints. [J]. Adhesion Science and Technology. 2006 24, 2011–(2026).

DOI: 10.1163/016942410x507713

Google Scholar

[24] Z. Chen, R.D. Adams, L.F.M. da Silva, The use of the J-integral to analyse adhesive bonds with and without a crack. [J]. International Journal of Adhesion & Adhesives. 2011 31 48–55.

DOI: 10.1016/j.ijadhadh.2010.11.005

Google Scholar

[25] M. Clarke, M. Buckley Characterization and Simulation of Structural Adhesives. [C] 7th European LS-DYNA Conference.

Google Scholar

[26] Blackman, B.R.K., et al., The fracture behaviour of structural adhesives under high rates of testing [J]. Engineering Fracture Mechanics, 2009 76(18):. 2868-2889.

DOI: 10.1016/j.engfracmech.2009.07.013

Google Scholar

[27] Karac, A., et al., Modelling the fracture behaviour of adhesively-bonded joints as a function of test rate. [J]. Engineering Fracture Mechanics, 2011. 78(6): 973-989.

DOI: 10.1016/j.engfracmech.2010.11.014

Google Scholar

[28] Blackman, B.R.K., et al., The fracture behavior of adhesively-bonded composite joints: Effects of rate of test and mode of loading. [J] International Journal of Solids and Structures, 2012 49 (13). 1434-1452.

DOI: 10.1016/j.ijsolstr.2012.02.022

Google Scholar

[29] Banea, M.D., et al., Effects of Temperature and Loading Rate on the Mechanical Properties of a High Temperature Epoxy Adhesive. [J] Journal of Adhesion Science and Technology, 2012. 25(18): 2461-2474.

DOI: 10.1163/016942411x580144

Google Scholar

[30] P.T. Cheuk, L. Tong, A.N. Rider, J. Wang, Analysis of energy release rate for fatigue cracked metal-to-metal double-lap shear joints. [J] International Journal of Adhesion & Adhesives. 2005 25, 181–191.

DOI: 10.1016/j.ijadhadh.2004.04.007

Google Scholar

[31] Xin Yang The simulation technology of joint-welded joints under impact load, [M] 2005 Beijing Qsinghua University.

Google Scholar

[32] R.D.S.G. Campilho, M.F.S.F. de Moura, D.A. Ramantani, J.J.L. Morais, A.M.J.P. Barreto,J. Adhesively-bonded repair proposal for wood members damaged by horizontal shear using carbon-epoxy patches. [J]. International Journal of Adhesion & Adhesives. 2010 86, 649–670.

DOI: 10.1080/00218464.2010.484318

Google Scholar

[33] R.D.S.G. Campilho, M.D. Banea, A.M.G. Pinto, L.F.M. da Silva, A.M.P. de Jesus, Strength prediction of single- and double-lap joints by standard and extended finite element modelling. [J]. International Journal of Adhesion & Adhesives. 2011, 31, 363–372.

DOI: 10.1016/j.ijadhadh.2010.09.008

Google Scholar

[34] A.M.G. Pinto, A.G. Magalhães, R.D.S.G. Campilho, M.F.S.F. de Moura, A.P.M. Baptista, Singlelap joints of similar and dissimilar adherends bonded with an acrylic adhesive [J]. International Journal of Adhesion & Adhesives. 2009 85, 351–376.

DOI: 10.1080/00218460902880313

Google Scholar

[35] R.D.S.G. Campilho, M.F.S.F. de Moura, J.J.M.S. Domingues, J.J.L. Morais, Computational modelling of the residual strength of repaired composite laminates using a cohesive damage model. [J]. International Journal of Adhesion & Adhesives 200822, 1565–1591.

DOI: 10.1163/156856108x309576

Google Scholar

[36] Kanninen MF, Popelar CH, Advanced fracture mechanics, Oxford University Press, Oxford.

Google Scholar

[37] de Moura MFSF, Pereira AB, de Morais AB, Influence of intralaminar cracking on the apparent interlaminar model fracture toughness of cross-ply laminates, Fatigue Fracture Engineering.

DOI: 10.1111/j.1460-2695.2004.00739.x

Google Scholar

[38] R.D.S.G. Campilho, M.F.S.F. de Moura, J.J.M.S. Domingues, Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs [J] International Journal of Solids Structure. 45, 1497–1512.

DOI: 10.1016/j.ijsolstr.2007.10.003

Google Scholar

[39] Campilho, R.D.S.G., et al., Modelling of Single-Lap Joints Using Cohesive Zone Models: Effect of the Cohesive Parameters on the Output of the Simulations. The Journal of Adhesion 2012 88(4-6). 513-533.

DOI: 10.1080/00218464.2012.660834

Google Scholar

[40] T. Andersson, U. Stigh, The stress-elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces. [J] International Journal of Solids Structure. 2004 41, 413–434.

DOI: 10.1016/j.ijsolstr.2003.09.039

Google Scholar

[41] J.L. Högberg, U. Stigh. Specimen proposals for mixed mode testing of adhesive layer [J] Engineering and Fracture. Mechanics. 2006 73, 2541–2556.

DOI: 10.1016/j.engfracmech.2006.04.017

Google Scholar

[42] G. Ji, Z. Ouyang, G. Li, Effects of adhesive thickness on global and local Mode-I interfacial fracture of bonded joints. [J] International Journal of Solids Structure. 2010 47, 2445–2458.

DOI: 10.1016/j.ijsolstr.2010.05.006

Google Scholar