p.123
p.126
p.130
p.133
p.137
p.142
p.146
p.150
p.154
Dynamics of Crack Healing and its Molecular Dynamics Simulation of Al2O3-MgAlON Composite
Abstract:
After preparing samples (3mm long×4mm wide×36mm high) of Al2O3-MgAlON composites and sintered at 1500°C for 2 h in N2 atmosphere, samples’ cracks were carved by a Vickers hardometer’s pressing head on the center of the sample surface (4 mm×36 mm). Subsequently, the cracks were healed at 1000°C-1550°C for 6 h respectively. Effects of healing temperature on sample’s strength, crack healing dynamics and its molecular dynamics simulation were investigated. The results suggested that: the optimum range of cracks healing temperature was 1300°C-1550°C, and the healing process accelerated at 1300°C, meanwhile, the strength of samples increased significantly. Cracks completely healing finished at 1550°C. The dynamics equation of crack healing was lnν = -Q/kT+lnC. Through characterizing the crack healing rate with the recovering rate of sample’s strength, the diffusion activation energy Q = 4.264 × 10-30 J•K-1 and diffusion constant C=7.359 were claimed. The result of the molecular dynamics simulation suggested that cracks healing process was caused by diffusion could be divided into five stages: passivation of crack tips, formation of salient island, crack shrinkage, generation of secondary crack, and complete healing.
Info:
Periodical:
Pages:
137-141
Citation:
Online since:
April 2010
Authors:
Price:
Сopyright:
© 2010 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: