Ab Initio Study of Water Clusters Adsorption on Graphite Surface

Article Preview

Abstract:

Using the density functional theory method, we have characterized the geometrical structures and adsorption energy of water clusters adsorption on graphite surface. When one water molecule inter- acts with graphite surface, one of the H-O bonds formed hydrogen-bond with carbon atom in graphite sheet; in the two water molecules structure, the linear dimmer nearly parallel to the graphite surface, and also formed the hydrogen-bond; when the number of water molecules increased to six, all the H-O bond that point to the graphite surface has formed Hydrogen-bond with it. The binding energy of the water clusters with a graphite surface depends only on the number of water molecules that form hydrogen bond.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 105-106)

Pages:

499-501

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Chugh, D. D. L. Chung: Carbon. Vol. 40 (2002), p.2285.

Google Scholar

[2] E. Diaz, S. Ordonez, A. Vega: J. Colloid and Interface Sci. Vol. 305 (2007), p.7.

Google Scholar

[3] D. S. Martin: Surf. Sci. Vol. 536 (2003), p.15.

Google Scholar

[4] P. Jensen, X. Blase, P. Ordej: Surf. Sci. Vol. 564 (2004), p.173.

Google Scholar

[5] C. K. Lutrus, D. E. Hagen, S. H. S. Salk: Atmos. Environ. Part A. Vol. 24 (1990), p.1397.

Google Scholar

[6] A. Sediki, F. Lebsir, L. Martiny, et al.: Food Chem. Vol. 106 (2008), p.1476.

Google Scholar

[7] B. Hartke: Chem. Phys. Vol. 346 (2008), p.286.

Google Scholar

[8] P.C. Sanfelix, S. Holloway, K. W. Kolasinski, et al.: Surf. Sci. Vol. 532-535 (2003), p.166.

Google Scholar

[9] Y. Sasaki, H. D. Nagata, Y. -K. Fujii, et al.: Colloids and Surf. B Vol. 9 (1997), p.169.

Google Scholar

[10] A. Allouche, Y. Ferro: Carbon. Vol. 44 (2006) , p.3320.

Google Scholar

[11] H. Ruuska, T. A. Pakkanen: Carbon. Vol. 41 (2003), p.699.

Google Scholar

[12] B. Collignon, P. N. M. Hoang, S. Picaud, J. C. Rayez: Chem. Phys. Lett. Vol. 406 (2005), p.430.

Google Scholar

[13] B. Hourahine, T. Frauenheim: J. Phys. Chem. A Vol. 111 (2007), p.5678.

Google Scholar

[14] S. S. Xantheas: Chem. Phys. Vol. 258 (2000), p.225.

Google Scholar

[15] C. S. Lin, R. Q. Zhang, S. T. Lee, et al.: J. Phys. Chem. B Vol. 109 (2005), p.14183.

Google Scholar

[16] P. Hirunsit, P. B. Balbuena: J. Phys. Chem. A. Vol. 111 (2007), p.10722.

Google Scholar

[17] I. W. Sudiarta, D. J. W. Geldart: J. Phys. Chem. A. Vol. 110 (2006), p.10501.

Google Scholar

[18] T. Lankau, I. L. Cooper: J. Phys. Chem. A. Vol. 105 (2001), p.4084.

Google Scholar

[19] K. Karapetian and K. D. Jordan: Water in Confined Environ., (2003).

Google Scholar