Study on the Bactriostasis of Nano-Silver against Penicillium

Article Preview

Abstract:

15# nanosilvehas significantly bateriostatic effect against Penicillium, The minimal inhibitory concentrations of 15# nana silve for inhabiting Penicillium is 1 mg/L. Through a comparative study of the bacteriostatic effect of different nanosilver and other bacteriostatic agents against Penicillium, it is found that the bacteriostatic effect of nanosilver against penicillium is very significantly better than lincomycin hydrochloride and streptomycin sulfate, in which, the bacteriostatic effect of nanosilver 14# nanosilve against penicillium is significantly better than 13# nanosilve, and 13# nanosilve is very significantly better than that of 15# nanosilve.It provides a new way for the prevention and control of Penicillium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-69

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.T. Vimala, G. Sathishkumar, S. Sivaramakrishnan, Optimization of reaction conditions to fabricate nano-silver using Couroupita guianensis Aubl. (leaf & fruit) and its enhanced larvicidal effect, Spectrochim Acta A Mol Biomol Spectrosc. 135 (2014).

DOI: 10.1016/j.saa.2014.06.009

Google Scholar

[2] Z. Li, J. Sun, J. Lan, Q. Qi, Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans adhesion and biofilm formation. Gerodontology, (2014) doi: 10. 1111/ger. 12142.

DOI: 10.1111/ger.12142

Google Scholar

[3] L. Sintubin, B. De Gusseme, P. Van der Meeren, B.F. Pycke, W. Verstraete and N. Boon, The antibacterial activity of biogenic silver and its mode of action. Applied microbiology and biotechnology, 91(2011) 153-162.

DOI: 10.1007/s00253-011-3225-3

Google Scholar

[4] M. Rai, K. Kon, A. Ingle, N. Duran, S. Galdiero and M. Galdiero, Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects, Applied microbiology and biotechnology, 98(2014)1951-(1961).

DOI: 10.1007/s00253-013-5473-x

Google Scholar

[5] C. Wang, X. Huang, W. Deng, C. Chang, R. Hang, B. Tang. A nano-silver composite based on the ion-exchange response for the intelligent antibacterial applications, Mater Sci Eng C Mater Biol Appl, 41 (2014) 134-41.

DOI: 10.1016/j.msec.2014.04.044

Google Scholar

[6] V.D. Praveena and K.V. Kumar,. Physicochemical Studies on Nano Silver Particles Prepared by Green and Chemical Methods. In Advanced Materials Research, 938 (2014) 242-250.

DOI: 10.4028/www.scientific.net/amr.938.242

Google Scholar

[7] A.M. Tugulea, D. Bérubé, M. Giddings, F. Lemieux, J. Hnatiw, J. Priem andM.L. Avramescu, Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation, Environmental Science and Pollution Research, (2014).

DOI: 10.1007/s11356-014-2508-5

Google Scholar

[8] M.K. Rai, S.D. Deshmukh, A.P. Ingle and A.K. Gade, Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. Journal of applied microbiology, 112 (2012) 841-852.

DOI: 10.1111/j.1365-2672.2012.05253.x

Google Scholar

[9] J. Cao, X. Liu, H. Yao, H. Yang, X. Wang, W. Sun, Study of celluar toxicity and antibacterial property of nano-silver coating modified denture baseStudy of celluar toxicity and antibacterial property of nano-silver coating modified denture base, Zhonghua Kou Qiang Yi Xue Za Zhi, 49( 2014) 229-233.

Google Scholar

[10] R.D. Holbrook, K. Rykaczewski, M.E. Staymates, Dynamics of silver nanoparticle release from wound dressings revealed via in situ nanoscale imaging, J Mater Sci Mater Med, (2014) Jul.

DOI: 10.1007/s10856-014-5265-6

Google Scholar

[11] S. Kasraei, L. Sami, S. Hendi, M.Y. Alikhani, L. Rezaei-Soufi, Z. Khamverdi, Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus, Restor Dent Endod. 39 (2014).

DOI: 10.5395/rde.2014.39.2.109

Google Scholar

[12] S.H. Shin and M.K. Ye, The effect of nano-silver on the activation of nasal polyp epithelial cells by Alternaria, Der P1 and staphylococcal enterotoxin B, International immunopharmacology, 11 (2011) 1691-1696.

DOI: 10.1016/j.intimp.2011.05.028

Google Scholar

[13] D. Singh, V. Rathod, S. Ninganagouda, J. Hiremath, A.K. Singh and J. Mathew, Optimization and Characterization of Silver Nanoparticle by Endophytic Fungi Penicillium sp. Isolated from Curcuma longa (Turmeric) and Application Studies against MDR E. coli and S. aureus, Bioinorganic chemistry and applications, (2014).

DOI: 10.1155/2014/408021

Google Scholar

[14] M.Z. Si, Y. Aan, J.L. Peng, Study on the preparation of nanometer silver sol and the activity of SERS electrolytic method, Spectroscopy and Spectral Analysis, 27(2007)951-952.

Google Scholar

[15] L. Qiu, P. Liu, L. Zhao, M. Wen, H. Yang, S. Fan, L. Zhou, Analysis of plant genomic DNAs and the genetic relationship among plants by using surface-enhanced Raman spectroscopy. Vibrational Spectroscopy, 72(2014) 134-141.

DOI: 10.1016/j.vibspec.2014.03.006

Google Scholar

[16] A.C. Sousa, J.R. Almeida, C.C. Pereira, M. Ramiro Pastorinho, A.M. Pereira, A.J. Nogueira, L. Taborda-Barata, J.P. Teixeira, A.C. Correia, A. Alves, Characterization of fungal communities in house dust samples collected from central portugal-a preliminary survey, J Toxicol Environ Health A. 77 (2014).

DOI: 10.1080/15287394.2014.911137

Google Scholar

[17] F. Abidi, N. Aissaoui J.M. Chobert, T. Haertlé, M.N. Marzouki. Neutral Serine Protease from Penicillium italicum. Purification, Biochemical Characterization, and Use for Antioxidative Peptide Preparation from Scorpaena notata Muscle, Appl Biochem Biotechnol. (2014 )Jul 18.

DOI: 10.1007/s12010-014-1052-6

Google Scholar

[18] D. Simonaitiene, I. Brink, A. Sipailiene, D. Leskauskaite, The effect of chitosan and whey proteins-chitosan films on the growth of Penicillium expansum in apples, J Sci Food Agric. (2014) Jul 30. doi: 10. 1002/jsfa. 6846.

DOI: 10.1002/jsfa.6846

Google Scholar

[19] M.M. Hossain, F. Sultana, M. Miyazawa, M. Hyakumachi, The plant growth-promoting fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber, J Oleo Sci. 63(2014)391-400.

DOI: 10.5650/jos.ess13143

Google Scholar

[20] T. Specht, T.A. Dahlmann, I. Zadra, H. Kürnsteiner, U. Kück, Complete Sequencing and Chromosome-Scale Genome Assembly of the Industrial Progenitor Strain P2niaD18 from the Penicillin Producer Penicillium chrysogenum, Genome Announc.  2(2014).

DOI: 10.1128/genomea.00577-14

Google Scholar

[21] S.H. Moussa, A.A. Tayel, A.S. Alsohim, and R.R. Abdallah, Botryticidal Activity of Nanosized Silver‐Chitosan Composite and Its Application for the Control of Gray Mold in Strawberry. Journal of food science, 78(2013)1589-1594.

DOI: 10.1111/1750-3841.12247

Google Scholar

[22] K. Lamsal, S.W. Kim, J.H. Jung, Y.S. Kim, K.S. Kim and Y.S. Lee, Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology, 39 (2011) 26-32.

DOI: 10.4489/myco.2011.39.1.026

Google Scholar

[23] S.W. Kim, J.H. Jung, K. Lamsal, Y.S. Kim, S.J. Sim, H.S. Kim and Y.S. Lee, Control efficacy of nano-silver liquid on Oak wilt caused by Raffaelea sp. in the field. Research in Plant Disease, 17 (2011) 136-141.

DOI: 10.5423/rpd.2011.17.2.136

Google Scholar

[24] A.F. Chrimes, K. Khoshmanesh, S.Y. Tang, B.R. Wood, P. R. Stoddart, S.S. Collins and K. Kalantar-Zadeh, In situ SERS probing of nano-silver coated individual yeast cells. Biosensors and Bioelectronics, 49 (2013) 536-541.

DOI: 10.1016/j.bios.2013.05.053

Google Scholar

[25] N. Soni and S. Prakash, Factors Affecting the Geometry of Silver Nanoparticles Synthesis in Chrysosporium Tropicum and Fusarium Oxysporum, American Journal of Nanotechnology, 2 (2012) 112.

DOI: 10.3844/ajnsp.2011.112.121

Google Scholar

[26] W. G. I. U. Rathnayake, H. Ismail, A. Baharin, A. G. N. D. Darsanasiri and S. Rajapakse, Synthesis and characterization of nano silver based natural rubber latex foam for imparting antibacterial and anti-fungal properties, Polymer Testing, 31 (2012).

DOI: 10.1016/j.polymertesting.2012.01.010

Google Scholar

[27] S.W. Kim, J.H. Jung, K. Lamsal, Y.S. Kim, J.S. Min, Y.S. Lee, Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi, Mycobiology, 40(2012) 53-58.

DOI: 10.5941/myco.2012.40.1.053

Google Scholar

[28] C. Xu,C. Gao, H. Zhang, J. Chen, In Vitro Activity of nano-silver against Pulmonary Pathogenic Fungi, Life Science Journal, , 10 (2013).

Google Scholar

[29] R.R. Nayak, N. Pradhan, D. Behera, K.M. Pradhan, S. Mishra, L.B. Sukla and B.K. Mishra, Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization, Journal of Nanoparticle Research, 13 (2011) 3129-3137.

DOI: 10.1007/s11051-010-0208-8

Google Scholar

[30] Z.K. Xia, Q.H. Ma, S.Y. Li, D.Q. Zhang, L. Cong, Y.L. Tian, R.Y. Yang, The antifungal effect of silver nanoparticles on Trichosporon asahii, J Microbiol Immunol Infect. 14 (2014) 1684-1182.

DOI: 10.1016/j.jmii.2014.04.013

Google Scholar