[1]
R.T. Vimala, G. Sathishkumar, S. Sivaramakrishnan, Optimization of reaction conditions to fabricate nano-silver using Couroupita guianensis Aubl. (leaf & fruit) and its enhanced larvicidal effect, Spectrochim Acta A Mol Biomol Spectrosc. 135 (2014).
DOI: 10.1016/j.saa.2014.06.009
Google Scholar
[2]
Z. Li, J. Sun, J. Lan, Q. Qi, Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans adhesion and biofilm formation. Gerodontology, (2014) doi: 10. 1111/ger. 12142.
DOI: 10.1111/ger.12142
Google Scholar
[3]
L. Sintubin, B. De Gusseme, P. Van der Meeren, B.F. Pycke, W. Verstraete and N. Boon, The antibacterial activity of biogenic silver and its mode of action. Applied microbiology and biotechnology, 91(2011) 153-162.
DOI: 10.1007/s00253-011-3225-3
Google Scholar
[4]
M. Rai, K. Kon, A. Ingle, N. Duran, S. Galdiero and M. Galdiero, Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects, Applied microbiology and biotechnology, 98(2014)1951-(1961).
DOI: 10.1007/s00253-013-5473-x
Google Scholar
[5]
C. Wang, X. Huang, W. Deng, C. Chang, R. Hang, B. Tang. A nano-silver composite based on the ion-exchange response for the intelligent antibacterial applications, Mater Sci Eng C Mater Biol Appl, 41 (2014) 134-41.
DOI: 10.1016/j.msec.2014.04.044
Google Scholar
[6]
V.D. Praveena and K.V. Kumar,. Physicochemical Studies on Nano Silver Particles Prepared by Green and Chemical Methods. In Advanced Materials Research, 938 (2014) 242-250.
DOI: 10.4028/www.scientific.net/amr.938.242
Google Scholar
[7]
A.M. Tugulea, D. Bérubé, M. Giddings, F. Lemieux, J. Hnatiw, J. Priem andM.L. Avramescu, Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation, Environmental Science and Pollution Research, (2014).
DOI: 10.1007/s11356-014-2508-5
Google Scholar
[8]
M.K. Rai, S.D. Deshmukh, A.P. Ingle and A.K. Gade, Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. Journal of applied microbiology, 112 (2012) 841-852.
DOI: 10.1111/j.1365-2672.2012.05253.x
Google Scholar
[9]
J. Cao, X. Liu, H. Yao, H. Yang, X. Wang, W. Sun, Study of celluar toxicity and antibacterial property of nano-silver coating modified denture baseStudy of celluar toxicity and antibacterial property of nano-silver coating modified denture base, Zhonghua Kou Qiang Yi Xue Za Zhi, 49( 2014) 229-233.
Google Scholar
[10]
R.D. Holbrook, K. Rykaczewski, M.E. Staymates, Dynamics of silver nanoparticle release from wound dressings revealed via in situ nanoscale imaging, J Mater Sci Mater Med, (2014) Jul.
DOI: 10.1007/s10856-014-5265-6
Google Scholar
[11]
S. Kasraei, L. Sami, S. Hendi, M.Y. Alikhani, L. Rezaei-Soufi, Z. Khamverdi, Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus, Restor Dent Endod. 39 (2014).
DOI: 10.5395/rde.2014.39.2.109
Google Scholar
[12]
S.H. Shin and M.K. Ye, The effect of nano-silver on the activation of nasal polyp epithelial cells by Alternaria, Der P1 and staphylococcal enterotoxin B, International immunopharmacology, 11 (2011) 1691-1696.
DOI: 10.1016/j.intimp.2011.05.028
Google Scholar
[13]
D. Singh, V. Rathod, S. Ninganagouda, J. Hiremath, A.K. Singh and J. Mathew, Optimization and Characterization of Silver Nanoparticle by Endophytic Fungi Penicillium sp. Isolated from Curcuma longa (Turmeric) and Application Studies against MDR E. coli and S. aureus, Bioinorganic chemistry and applications, (2014).
DOI: 10.1155/2014/408021
Google Scholar
[14]
M.Z. Si, Y. Aan, J.L. Peng, Study on the preparation of nanometer silver sol and the activity of SERS electrolytic method, Spectroscopy and Spectral Analysis, 27(2007)951-952.
Google Scholar
[15]
L. Qiu, P. Liu, L. Zhao, M. Wen, H. Yang, S. Fan, L. Zhou, Analysis of plant genomic DNAs and the genetic relationship among plants by using surface-enhanced Raman spectroscopy. Vibrational Spectroscopy, 72(2014) 134-141.
DOI: 10.1016/j.vibspec.2014.03.006
Google Scholar
[16]
A.C. Sousa, J.R. Almeida, C.C. Pereira, M. Ramiro Pastorinho, A.M. Pereira, A.J. Nogueira, L. Taborda-Barata, J.P. Teixeira, A.C. Correia, A. Alves, Characterization of fungal communities in house dust samples collected from central portugal-a preliminary survey, J Toxicol Environ Health A. 77 (2014).
DOI: 10.1080/15287394.2014.911137
Google Scholar
[17]
F. Abidi, N. Aissaoui J.M. Chobert, T. Haertlé, M.N. Marzouki. Neutral Serine Protease from Penicillium italicum. Purification, Biochemical Characterization, and Use for Antioxidative Peptide Preparation from Scorpaena notata Muscle, Appl Biochem Biotechnol. (2014 )Jul 18.
DOI: 10.1007/s12010-014-1052-6
Google Scholar
[18]
D. Simonaitiene, I. Brink, A. Sipailiene, D. Leskauskaite, The effect of chitosan and whey proteins-chitosan films on the growth of Penicillium expansum in apples, J Sci Food Agric. (2014) Jul 30. doi: 10. 1002/jsfa. 6846.
DOI: 10.1002/jsfa.6846
Google Scholar
[19]
M.M. Hossain, F. Sultana, M. Miyazawa, M. Hyakumachi, The plant growth-promoting fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber, J Oleo Sci. 63(2014)391-400.
DOI: 10.5650/jos.ess13143
Google Scholar
[20]
T. Specht, T.A. Dahlmann, I. Zadra, H. Kürnsteiner, U. Kück, Complete Sequencing and Chromosome-Scale Genome Assembly of the Industrial Progenitor Strain P2niaD18 from the Penicillin Producer Penicillium chrysogenum, Genome Announc. 2(2014).
DOI: 10.1128/genomea.00577-14
Google Scholar
[21]
S.H. Moussa, A.A. Tayel, A.S. Alsohim, and R.R. Abdallah, Botryticidal Activity of Nanosized Silver‐Chitosan Composite and Its Application for the Control of Gray Mold in Strawberry. Journal of food science, 78(2013)1589-1594.
DOI: 10.1111/1750-3841.12247
Google Scholar
[22]
K. Lamsal, S.W. Kim, J.H. Jung, Y.S. Kim, K.S. Kim and Y.S. Lee, Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology, 39 (2011) 26-32.
DOI: 10.4489/myco.2011.39.1.026
Google Scholar
[23]
S.W. Kim, J.H. Jung, K. Lamsal, Y.S. Kim, S.J. Sim, H.S. Kim and Y.S. Lee, Control efficacy of nano-silver liquid on Oak wilt caused by Raffaelea sp. in the field. Research in Plant Disease, 17 (2011) 136-141.
DOI: 10.5423/rpd.2011.17.2.136
Google Scholar
[24]
A.F. Chrimes, K. Khoshmanesh, S.Y. Tang, B.R. Wood, P. R. Stoddart, S.S. Collins and K. Kalantar-Zadeh, In situ SERS probing of nano-silver coated individual yeast cells. Biosensors and Bioelectronics, 49 (2013) 536-541.
DOI: 10.1016/j.bios.2013.05.053
Google Scholar
[25]
N. Soni and S. Prakash, Factors Affecting the Geometry of Silver Nanoparticles Synthesis in Chrysosporium Tropicum and Fusarium Oxysporum, American Journal of Nanotechnology, 2 (2012) 112.
DOI: 10.3844/ajnsp.2011.112.121
Google Scholar
[26]
W. G. I. U. Rathnayake, H. Ismail, A. Baharin, A. G. N. D. Darsanasiri and S. Rajapakse, Synthesis and characterization of nano silver based natural rubber latex foam for imparting antibacterial and anti-fungal properties, Polymer Testing, 31 (2012).
DOI: 10.1016/j.polymertesting.2012.01.010
Google Scholar
[27]
S.W. Kim, J.H. Jung, K. Lamsal, Y.S. Kim, J.S. Min, Y.S. Lee, Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi, Mycobiology, 40(2012) 53-58.
DOI: 10.5941/myco.2012.40.1.053
Google Scholar
[28]
C. Xu,C. Gao, H. Zhang, J. Chen, In Vitro Activity of nano-silver against Pulmonary Pathogenic Fungi, Life Science Journal, , 10 (2013).
Google Scholar
[29]
R.R. Nayak, N. Pradhan, D. Behera, K.M. Pradhan, S. Mishra, L.B. Sukla and B.K. Mishra, Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization, Journal of Nanoparticle Research, 13 (2011) 3129-3137.
DOI: 10.1007/s11051-010-0208-8
Google Scholar
[30]
Z.K. Xia, Q.H. Ma, S.Y. Li, D.Q. Zhang, L. Cong, Y.L. Tian, R.Y. Yang, The antifungal effect of silver nanoparticles on Trichosporon asahii, J Microbiol Immunol Infect. 14 (2014) 1684-1182.
DOI: 10.1016/j.jmii.2014.04.013
Google Scholar