[1]
Ren SR, Ma ZY, Chen LQ. Effect of initial butt surface on tensile properties and fracture behaviour of friction stir welded Al-Zn-Mg-Cu alloy. Materials Science and Engineering. Materials Science and Engineering. Vol. 479 (2008), pp.293-299.
DOI: 10.1016/j.msea.2007.06.047
Google Scholar
[2]
Dubourg L, A. Merati, M. Jahazi. Process optimisation and mechanical properties of friction stir lap welds of 7075-T6 stringers on 2024-T3 skin. Materials and Design. Vol. 31 (2010), pp.3324-3330.
DOI: 10.1016/j.matdes.2010.02.002
Google Scholar
[3]
Cavaliere P, Cerri E. Mechanical response of 2024-7075 aluminium alloys joined by Friction Stir Welding. Materials Science. Vol. 40 (2005), pp.3669-3676.
DOI: 10.1007/s10853-005-0474-5
Google Scholar
[4]
Cavaliere P, Nobile R, Panella FW, Squillace A. Mechanical and microstructural behaviour of 2024-7075 aluminium alloy sheets joined by friction stir welding. Int J Mach Tools Manuf. Vol. 46 (2006), pp.588-594.
DOI: 10.1016/j.ijmachtools.2005.07.010
Google Scholar
[5]
Su JQ, Nelson TW, Mishra R, Mahoney M. Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater. Vol. 51 (2003), p.713–729.
DOI: 10.1016/s1359-6454(02)00449-4
Google Scholar
[6]
Wei ST, Hao CY. Study of friction stir welding of 01420 aluminum–lithium alloy. Materials Science and Engineering. Vol. 453 (2007), pp.170-177.
DOI: 10.1016/j.msea.2006.10.081
Google Scholar
[7]
Cavaliere P, Cabibbo M, Panella F. 2198 Al–Li plates joined by Friction Stir Welding. Mechanical and microstructural behaviour. Materials and Design. Vol. 30 (2009), pp.3622-3631.
DOI: 10.1016/j.matdes.2009.02.021
Google Scholar
[8]
Lertora E, Gambaro C. AA8090 Al-Li alloy FSW parameters to minimize defects and increase fatigue life. Int J Mater Form. Vol. 3 (2010), pp.1003-1006.
DOI: 10.1007/s12289-010-0939-1
Google Scholar
[9]
Fersini D, Pirondi A. Analysis and modelling of fatigue failure of friction stir welded aluminum alloy single-lap joints. Procedia Engineering. Vol. 10 (2011), pp.3297-3303.
DOI: 10.1016/j.engfracmech.2007.04.013
Google Scholar
[10]
Fersini D, Pirondi A. Fatigue behaviour of Al2024-T3 friction stir welded lap joints. Engineering Fracture Mechanics. Vol. 74 (2007), pp.468-480.
DOI: 10.1016/j.engfracmech.2006.07.010
Google Scholar
[11]
Cao X, Jahazi M. Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy. Materials and Design. Vol. 32 (2011), pp.1-11.
DOI: 10.1016/j.matdes.2010.06.048
Google Scholar
[12]
Ceschini L, Boromei I, Minak G, Morri A, Tarterini F. Microstructure, tensile and fatigue properties of AA6061/20 vol. %Al2O3p0 friction stir welded joints. Applied science and manufacturing. Vol. 38 (2007), pp.1200-1210.
DOI: 10.1016/j.compositesa.2006.06.009
Google Scholar
[13]
Song KH, Kim WY, Nakata K. Evaluation of microstructures and mechanical properties of friction stir welded lap joints of Inconel 600/SS 400. Materials and Design. Vol. 35 (2012), pp.126-132.
DOI: 10.1016/j.matdes.2011.09.054
Google Scholar
[14]
Cederqvist L, Reynolds AP. Factors affected the properties of friction stir welded aluminum lap joints. Weld J (Res. Supplement) (2001), p.281–287.
Google Scholar
[15]
Liu HJ, FujiI H, Maeda M, Nogi K. Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy. Materials Processing Technology. Vol. 142 (2003), pp.692-696.
DOI: 10.1016/s0924-0136(03)00806-9
Google Scholar