Three-Dimensional Simulation of Nano-Composite Ceramic Tool Materials

Article Preview

Abstract:

A phase field model of three-phase composite ceramic tool materials with two kinds of nanoparticles is set up in this research. The three-dimensional simulation algorithm is modified and a new efficient algorithm is established. The microstructure evolution of three-phase nanoceramic tool materials is more efficiently and successfully simulated in 200x200x200 unit size. Microstructure evolution of single-phase and three-phase ceramic tool materials is simulated respectively. It can be found that the peak value of grain size distribution for three-phase nanoceramic tool material is smaller than average diameter. It indicates that the nanoparticles not only restrain grain boundary migration, but also prevent the elimination of small grains and refine matrix grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-90

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xing Ai, Hong Xiao. Cutting processing of Ceramic tool Materials. Beijing: Press of Mechanical Industry(1988).

Google Scholar

[2] R.W. Steinbrech. Toughening mechanisms for ceramic materials. Journal of the European Ceramic Society 10 (3) 131–142(1992).

DOI: 10.1016/0955-2219(92)90026-a

Google Scholar

[3] H.L. Liu, C.Z. Huang, J. Wang, X.Y. Teng. Fabrication and mechanical properties of Al2O3/Ti(C0. 7N0. 3) nano-composites. Materials Research Bulletin 41 (7) 1215–1224(2006).

DOI: 10.1016/j.materresbull.2006.01.014

Google Scholar

[4] H.L. Liu. Study on the Fabrication and cutting performance of ceramic tool materials based on multi-phase and multi-scale nanocomposites. [D] 12-13(2005).

Google Scholar

[5] Srolovirz D J, Anderson M P, Grest G S, et al. Grain growth in two dimensions. Scrip Metall 17, 241(1983).

Google Scholar

[6] D. Fan and L. -Q. Chen. Computer simulation of grain growth using a continuum field model, Acta metal, 45611-622(1997).

Google Scholar

[7] Mahis, K. W., Hanson, K., and Morrid, J. W. Jr., Comparative analysis of the cellular and Johnson-Mehl microstructures through computer simulation, Acta Metall., Vol. 28, No. 4, 443-453(1980).

DOI: 10.1016/0001-6160(80)90134-0

Google Scholar

[8] Chen LQ, Yang W. Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics, Phys. Rev. B 50, 15752–15756(1994).

DOI: 10.1103/physrevb.50.15752

Google Scholar

[9] D. A. Fan and L. Q. Chen. Diffuse-Interface Description of Grain Boundary Motion, Philos Mag. Lett., 75(4) , 187-196, (1997).

Google Scholar

[10] Yoshihiro Suwa, Yoshiyuki Saitob and Hidehiro Onodera. Phase field simulation of grain growth in three dimensional system containing finely dispersed second-phase particles. Scripta Materialia, 55(4), 407-410(2006).

DOI: 10.1016/j.scriptamat.2006.03.034

Google Scholar

[11] I. Steinbach, F. Pezzolla, B. Nestler, M. Seesselberg, R. Prieler, G. J. Schmitz and J. L. L. Rezende, A phase field concept for multiphase systems, Physica D, 94 , 135 – 147(1996).

DOI: 10.1016/0167-2789(95)00298-7

Google Scholar

[12] A. Kazaryan, Y. Wang, S.A. Dregia and B.R. Patton, Generalized phase-field model for computer simulation of grain growth in anisotropic systems. Physical Review B, 61, 14275(2000).

DOI: 10.1103/physrevb.61.14275

Google Scholar

[13] C. E. Krill and L. Q. Chen. Computer Simulation of 3-D Grain Growth Using a Phase-Field Model, Acta Mate, 50(12), 3057-3073(2002).

Google Scholar

[14] N. Moelans, B. Blanpai, P. wollants. Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations, Acta Mater, 55, 2173-2183(2007).

DOI: 10.1016/j.actamat.2006.11.018

Google Scholar

[15] Kunok Chang, Weiming Feng, Long-Qing Chen. Effect of second-phase particle morphology on grain growth kinetics, Acta Mater, 57, 5229-5236(2009).

DOI: 10.1016/j.actamat.2009.07.025

Google Scholar

[16] Mark Miodownik, Elizabeth A. Holm and Gregory N. Hassold, Highly Parallel Computer Simulations of Particle Pinning: Zener Vindicated, Scripta Mat. 42, 1173(2000).

DOI: 10.1016/s1359-6462(00)00354-7

Google Scholar

[17] S.P. Riege, C.V. Thompson and H.J. Frost. Simulation of the influence of particles on grain structure evolution in two-dimensional systems and thin films, Acta Mater. 47, 1879-1887(1999).

DOI: 10.1016/s1359-6454(99)00039-7

Google Scholar