Performance Improvement of Hydrogen Peroxide Sensor via Cadmium Doped Nickel Oxide Modifying N-Silicon Electrode

Article Preview

Abstract:

Cadmium ion doping was carried out during electrochemically cathodic plating nickel hydroxide on platinum films coated n-silicon (Pt/n-n+-Si electrode) in 0.1 M nickel nitrate solution containing 0.035 M cadmium nitrate. The morphology and composition of the products were characterized by scanning electron microscope (SEM) and x-ray photoelectron spectroscopy (XPS), respectively. A two-electrode cell based on Cd-doped NiO/Pt/n-n+-Si electrode and a platinum counter has been used for determination of hydrogen peroxide in absence of reference electrode by photocurrent measurement at a zero bias. The emphasis is laid on that the cadmium doping remarkably improves the sensibility of the photoelectrochemical hydrogen peroxide sensor. Under optimizing conditions a sensitivity of 254.6 μA mM-1 cm-2 and a linear response range from 0.02 mM up to 0.12 mM with a determination limit of 2.0 μM were achieved in a potassium hydroxide (KOH) solution at pH =13.3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-72

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.R. Guascito, D. Chirizzi, C. Malitesta, E. Mazzotta, M. Siciliano, T. Siciliano, A. Tepore, Biosensors and Bioelectronics 26 (2011) 3562-3569.

DOI: 10.1016/j.bios.2011.02.002

Google Scholar

[2] Y. Yang, S. Mu, Biosensors and Bioelectronics 21 (2005) 74-78.

Google Scholar

[3] Y. Sang,L. Zhang, Y.F. Li, L.Q. Chen, J.L. Xu, C.Z. Huang, Analytica Chimica Acta 659 (2010) 224-228.

Google Scholar

[4] Z. Yin, J. Wu, Z. Yang, Biosensors and Bioelectronics 26 (2011) 1970-(1974).

Google Scholar

[5] H. Li, Q. Gao, L. Chen, W. Hao, Sensors and Actuators B 173 (2012) 540-546.

Google Scholar

[6] S.K. Mishra, S. Rani, B.D. Gupta, Sensors and Actuators B 195 (2014) 215–222.

Google Scholar

[7] R.T. Wen, G.A. Niklasson, C.G. Granqvist, Thin Solid Films 565 (2014) 128–135.

Google Scholar

[8] M. Jlassi, I. Sta, M. Hajji, H. Ezzaouia, Applied Surface Science 308 (2014) 199–205.

DOI: 10.1016/j.apsusc.2014.04.134

Google Scholar

[9] Y.J. Zhai, J.H. Li, X. Fang, X.Y. Chen, F. Fang, X.Y. Chu, Z.P. Wei, X.H. Wang, Materials Sciencein Semiconductor Processing 26 (2014) 225–230.

DOI: 10.1016/j.mssp.2014.04.023

Google Scholar

[10] Y. Zhu, R. J. Mendelsberg, J. Zhu, J. Han, A. Anders, Applied Surface Science 265 (2013) 738– 744.

Google Scholar

[11] H. Li, W. Hao, J. Hu, H. Wu, Biosensors and Bioelectronics 47 (2013) 225.

Google Scholar

[12] J.L. Rodríguez, M.A. Valenzuela, T. Poznyak, L. Lartundo, I. Chairez, Journal of Hazardous Materials 262 (2013) 472– 481.

DOI: 10.1016/j.jhazmat.2013.08.041

Google Scholar

[13] I. Preda, R.J.O. Mossanek, M. Abbate, L. Alvarez, J. Méndez, A. Gutiérrez, L. Soriano, Surface Science 606 (2012) 1426–1430.

DOI: 10.1016/j.susc.2012.05.005

Google Scholar

[14] X. Qin, X. Li, L. Yang, Z. Wang, B. Zheng, H. Yuan, D. Xiao, Journal of Alloys and Compounds 610 (2014) 549–554.

Google Scholar