[1]
Biczók, I. Concrete Corrosion and Concrete Protection, Budapest, Akadémiai kiadó, (1972).
Google Scholar
[2]
Reiterman, P., Increasing oft he durability of concrete cover, in: P. Polach, L. Stuna (Eds. ), Proceedings of the 52th International Conference on Experimental Stress Analysis (EAN 2014), Vyzkumný a zkusebni ustav Plzeň, Plzeň, 2014, ISBN 978-80-231-0377-6.
Google Scholar
[3]
Máca, P., Jandeková, D., Konvalinka, P., The influence of metakaolin addition on the scaling of concrete due to frost action, Cement Wapno Beton, Vol. 19, (2014) , pp.1-7. ISSN 1425-8129.
Google Scholar
[4]
Pavlík, Z., Keppert, M., Pavlíková, M., Žumár, J., Fořt, J., Černý, R., Mechanical, hygric, and durability properties of cement mortar with MSWI bottom ash as partial silica sand replacement, Cement Wapno Beton, Vol. 19, (2014).
DOI: 10.2495/arc120121
Google Scholar
[5]
Drdácký, M., Fratini, F., Frankeová, D., Slížková, Z., The Roman mortars used in the construction of the Ponte di Augusto (Narni, Italy): A comprehensive assessment, Construction and Building Materials, Vol. 38, (2013), pp.1117-1128.
DOI: 10.1016/j.conbuildmat.2012.09.044
Google Scholar
[6]
Čáchová, M., Koňáková, D., Vejmelková, E., Keppert, M., Polozhyi, K., Černý, R., 2014, Pore structure and thermal characteristics of clay bricks, Advanced Materials Research, Vol. 892., pp.104-107.
DOI: 10.4028/www.scientific.net/amr.982.104
Google Scholar
[7]
Fridrichová, M., Dvořák, K. Gazdič, D., Alpha plaster produced by the pressureless method of dehydration in salt solution, Ceramics-Silikáty, 2014, 58(1), pp.21-27. ISSN 0862-5468.
Google Scholar
[8]
Tydlitát, V., Zákoutský, J., Černý, R., Early-stage hydration heat development in blended cements containing natural zeolite studied by isothermal calorimetry, Thermochimica Acta, 2014, Vol. 582, no. 1, pp.53-58. ISSN 0040-6031.
DOI: 10.1016/j.tca.2014.03.003
Google Scholar
[9]
Bodnárová, L., Jarolím, T., Válek, J., Brozovský, J., Hela, R., 2014, Selected Properties of Cementitous Composites with Portland Cements and Blended Portland Cements in Extreme Conditions, Applied Mechanics and Materials, Vol. 507, pp.443-448.
DOI: 10.4028/www.scientific.net/amm.507.443
Google Scholar
[10]
Basheer, L., Kroop, J., Cleland, D.J. Assessment of the durability of concrete from its permeation properties: a review. Construction and Building Materials, Volume 15, 2001, pp.93-103.
DOI: 10.1016/s0950-0618(00)00058-1
Google Scholar
[11]
Reiterman, P., Keppert, M., Čáchová, M., Holčapek, O., Vogel, F., Kolář, K., Konvalinka, P., 2014, Permeability and basic physical properties of concrete with metakaolin addition, Applied Mechanics and Materials, Vol. 486, pp.313-318.
DOI: 10.4028/www.scientific.net/amm.486.313
Google Scholar
[12]
Reiterman, P., Keppert, M., Holčapek, O., Kadledová, Z., Kolář, K.: Permeability of Concrete Surface Layer, in: M. Růžička, K. Doubrava, Z. Horák (Eds. ), Proceedings oft he 50th Annual Conference on Experimental Stress Analysis (EAN 2012), Czech Technical University in Prague Faculty of Mechanical Engineering, Prague, 2012, ISBN 978-80-01-05060-6, pp.361-368.
DOI: 10.18552/2016/scmt4d127
Google Scholar
[13]
Jerman, M., Keppert, M., Výborný, J., Černý, R., Hygric, thermal and durability properties of autoclaved aerated concrete, Construction and Building Materials 51 (2013) 352-359.
DOI: 10.1016/j.conbuildmat.2012.12.036
Google Scholar
[14]
Medveď, I., Trník, A., Multi-site correlation functions in surface diffusion, Journal of Statistical Mechanics: Theory and Experiment [online]. 2013, Vol. 2013, no. 4, ISSN 1742-5468.
DOI: 10.1088/1742-5468/2013/04/p04026
Google Scholar
[15]
Claisse, P. A., Transport properties of concrete: Measurement and applications, 1 st ed., Woodhead Publishing, (2014).
Google Scholar
[16]
Černý, R., Rovnaníková, P., Transport properties of concrete, 1 st ed., Spon Press, London, (2002).
Google Scholar