Data Processing in Abound Solutions of (2 + 1)-dimensional Boussinesq Equation

Article Preview

Abstract:

In this paper, the repeated exp-function method is applied to construct exact traveling wave solutions of the (2+1)-dimensional Boussinesq equation. With aid of symbolic computation, many generalized solitary solutions, periodic solutions and other exact solutions are successfully obtained. Thus, it is proved that the method is straightforward and effective to solve the nonlinear evolutions equations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-220

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Malfliet, Amer. J. Phys. 60 (1992) 650.

Google Scholar

[2] W. Malfliet, W. Hereman, Phys. Scr. 54 (1996) 563.

Google Scholar

[3] S.A. El-Wakil, M.A. Abdou, Chaos Solitons and Fractals 31 (4) (2007) 840.

Google Scholar

[4] E. Fan, Phys. Lett. A 277 (2000) 212.

Google Scholar

[5] A.M. Wazwaz, Appl. Math. Comput. 187 (2) (2007) 1131.

Google Scholar

[6] M.L. Wang, Phys. Lett. A 213 (1996) 279.

Google Scholar

[7] C.Q. Dai, J.F. Zhang, Chaos Solitons and Fractals 27 (2006) 1042.

Google Scholar

[8] X.Q. Zhao, H.Y. Zhi, H.Q. Zhang, Chaos Solitons and Fractals 28 (2006) 112.

Google Scholar

[9] J.H. He, X.H. Wu, Chaos Solitons and Fractals 30 (2006) 700.

Google Scholar

[10] J.H. He, M.A. Abdou, Chaos Solitons and Fractals 34 (5) (2007) 1421.

Google Scholar

[11] J.L. Zhang, M.L. Wang, Y.M. Wang, Z.D. Fang, Phys. Lett. A 350 (2006) 103.

Google Scholar

[12] J.H. He, Chaos Solitons and Fractals 26 (3) (2005) 695.

Google Scholar

[13] J.H. He, Chaos Solitons and Fractals 26 (3) (2005) 827.

Google Scholar

[14] J.H. He, Internat. J. Modern Phys. B 20 (10) (2006) 1141.

Google Scholar

[15] J.H. He. De-Verlag in Internet GmbH, Berlin, Germany, (2006).

Google Scholar

[16] Z.Y. Yan, Phys. Lett. A 361 (2007) 223.

Google Scholar

[17] A.S. Abdel Rady, E.S. Osman, Mohammed Khalfallah, Appl. Math. Comput. 219 (8) ( 2012) 3414.

Google Scholar