Effect of Controlling Concentration on the Properties of SnO2 Nanocystalline for Dye Sensitized Solar Cells

Article Preview

Abstract:

The study of dye-sensitized solar cells (DSCs) based on nanocrystalline films of high band gap semiconductors is a progressive field of research that is being carried out by scientists in a wide range of laboratories. To improve the conversion efficiency of the DSCs, the SnO2 nanorots photocurrent, the effect of controlling concentration on the properties of SnO2 nanocrystalline were investigated via the hydrothermal method, and characterized by XRD, HRTEM, BET and Absorption spectrum. Though analysis the results, the conclusion is shown the pure SnO2 is preparation, the prepared SnO2 nanocrystalline under 0.05mol/L shows the particle-shape crystalline, the surface area of SnO2 nanocrystalline is 102.1683m2/g. The prepared SnO2 nanocrystalline under 1mol/L the fiber-shape crystalline, the surface area of SnO2 nanocrystalline is 79.7591m2/g. The absorbance of SnO2 nanocrystalline shows the strong absorption in the ultraviolet ray range, the absorbance of synthesized SnO2 nanocrystalline under the concentration of SnCl4 solution for 1mol/L shows the higher value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-152

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Ling, J. G. Song, X. Y. Chen, J. Yang. Comparison of ZnO and TiO2 nanowires for photoanode of dye-sensitized solar cells[J]. J. Alloy. Compd. 546 (2013) 307-313.

DOI: 10.1016/j.jallcom.2012.08.030

Google Scholar

[2] L. Feng, J.G. Jia, Y. Fang. TiO2 flowers and spheres for ionic liquid electrolytes based dye-sensitized solar cells[J]. Electrochim Acta 87 (2013) 629-636.

DOI: 10.1016/j.electacta.2012.09.037

Google Scholar

[3] K. Fan, T.Y. Peng, J. N. Chen. A simple preparation method for quasi-solid-state flexible dye-sensitized solar cells by using sea urchin-like anatase TiO2 microspheres[J]. J. Power Sources. 222 (2013) 38-44.

DOI: 10.1016/j.jpowsour.2012.08.054

Google Scholar

[4] S. J. Lee, J. Choi, D. W. a Park. Synthesis of ZnO nanopowders by DC thermal plasma for dye-sensitized solar cells[J]. Mater. Sci. Eng. B. 178 (2013) 489-495.

DOI: 10.1016/j.mseb.2013.02.001

Google Scholar

[5] G. M. Aponsu, T. R. Wijayarathna, I. K. Perera. The enhancement of photovoltaic parameters indye-sensitized solar cells of nano-crystalline SnO2 by incorporating with large SrTiO3 particles[J]. Spectrochim Acta A. 109 (2013) 37-41.

DOI: 10.1016/j.saa.2013.02.016

Google Scholar

[6] T. T. Duong, H. J. Choi, Q. J. He. Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition[J]. J. Alloy. Compd. 561 (2013) 206-210.

DOI: 10.1016/j.jallcom.2013.01.188

Google Scholar

[7] W. Sun, X. H Sun, X. Z. Zhao. A low cost mesoporous carbon/SnO2/TiO2 nanocomposite counter electrode for dye-sensitized solar cells[J]. J. Power Sources 201 (2012) 402-407.

DOI: 10.1016/j.jpowsour.2011.10.097

Google Scholar

[8] N. Liu, K. Lee, P. Schmuki. Small diameter TiO2 nanotubes vs. nanopores in dye sensitized solar cells[J]. Electrochem Comm. 15 (2012) 1-4.

DOI: 10.1016/j.elecom.2011.11.003

Google Scholar

[9] N. Mir, M. S. Niasari. Effect of tertiary amines on the synthesis and photovoltaic propertiesof TiO2 nanoparticles in dye sensitized solar cells[J]. Electrochimica Acta 102 (2013) 274-281.

DOI: 10.1016/j.electacta.2013.03.141

Google Scholar

[10] Z. Chen, Y. F. Tian, S. J. Li, H. W Zheng, W. F. Zhang. Electrodeposition of arborous structure nanocrystalline SnO2 and application in flexible dye-sensitized solar cells[J]. J. Alloy. Compd. 515 (2012) 57-62.

DOI: 10.1016/j.jallcom.2011.10.116

Google Scholar