Impact of Domain Wall Pinning on the Dielectric Loss of Relaxor Ferroelectrics

Article Preview

Abstract:

Charge density wave theory is used to investigate the dependence of dielectric loss of relaxor ferroelectrics on temperature, frequency and concentration of impurities. The dielectric loss originates from the local pinning. The competition between the local and collective pinning leads to a peak in the curve of dielectric loss v.s. temperature as well as the curve of dielectric constant v.s. temperature. The peak temperature of dielectric constant TL, increases with increasing frequency and with decreasing concentration of impurities. The maximum dielectric loss is in proportion to TL and in inverse proportion to the barrier height. Our theoretical results agree qualitatively with the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-157

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. A. Smolenskii and V. A. Isupov, Zh. Tekh . Fiz. 24 (1954) 1375.

Google Scholar

[2] A. J. Bell, J. Phys. Condens. Matter 5 (1993) 8773.

Google Scholar

[3] S. -E. Park and T. R. Shrout, J. Appl. Phys. 82 (1997) 1804.

Google Scholar

[4] K. Uchino, Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic, Boston, (1996).

Google Scholar

[5] Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, J. Appl. Phys. 92 (2002) 2655.

Google Scholar

[6] A. A. Bokov, M. Maglione, and Z. -G. Ye, J. Phys.: Condens. Matter 19 (2007) 092001.

Google Scholar

[7] V. V. Shvartsman, J. Zhai , W. Kleemann, Ferroelectrics, 379 (2009) 77.

Google Scholar

[8] K. Uchino and S. Nomura, Ferroelectr. Lett. Sect. 44 (1982) 55.

Google Scholar

[9] H. Vogel, Z. Phys. 22 (1921) 645; G. Fulcher, J. Am. Ceram. Soc. 8 (1925) 339.

Google Scholar

[10] A. A. Bokov and Z. -G. Ye, Phys. Rev. B 74 (2006) 132102.

Google Scholar

[11] A. R. Akbarzadeh, S. Prosandeev, E.J. Walter, et al., Phys. Rev. Lett. 108 (2012) 257601.

Google Scholar

[12] X. Yao, Z. L. Chen, L.E. Gross, J. Appl. Phys. 54 (1983) 3399.

Google Scholar

[13] G. Burn and F. H. Dacal, Ferroelectrics 104 (1990) 25.

Google Scholar

[14] L. Xie, Y. L. Li, R. Yu et al., Phys. Rev. B 85 (2012) 014118.

Google Scholar

[15] J. Toulouse, B. E. Vugmeister, and R. Pattnaik, Phys. Rev. Lett. 73 (1994) 3467.

Google Scholar

[16] V. Westphal, W. Kleemann, and M. D. Glinchuk, Phys. Rev. Lett. 68 (1992) 847.

Google Scholar

[17] R. Blinc, A. Gregorovic, B. Zalar, et al., Phys. Rev. B 63 (2000) 024104.

Google Scholar

[18] B. E. Vugmeister and M. D. Glinchuk, Rev. Mod. Phys. 62 (1990) 993.

Google Scholar

[19] H. Frohlich, Proc. R. Soc. London, Ser. A 223 (1954) 296.

Google Scholar

[20] R. E. Peierls, Quantum Theory of Solids, Oxford University, New York/London, (1955).

Google Scholar

[21] P. A. Lee, and T. M. Rice, Phys. Rev. B 19 (1979) 3970; P. A. Lee, T. M. Rice, and P. W. Anderson, Phys. Rev. Lett. 31 (1973) 462; Solid State Commun. 14 (1974) 703.

Google Scholar

[22] G. Gruner, L. C. Tippie, J. Sanny, W. G. Clark, and N. P. Ong, Phys. Rev. Lett. 45 (1980) 935; G. Gruner, A. Zawadowski, and P. M. Chaikin, ibid. 46 (1981) 511; G. Gruner, W. G. Clark, and A. M. Portis, Phys. Rev. B 24 (1981) 3641.

Google Scholar

[23] V. V. Shvartsman and D. C. Lupascu, J. Am. Ceram. Soc. 95 (2012) 1.

Google Scholar

[24] S. Brazovskii and T. Nattermann, Adv. Phys. 53 (2004) 177.

Google Scholar

[25] A. Larkin, S. Brazovskii, Solid State Commun. 93 (1995) 275.

Google Scholar

[26] S. Brazovskiil and A. Larkin, Synthetic Met. 86 (1997) 2223.

Google Scholar

[27] Z. Jing, C. Ang, Z. Yu, P. M. Vilarinho, and J. L. Baptista, J. Appl. Phys. 84 (1998) 983.

Google Scholar

[28] D. Hennings and A. Schnell, G. Simon, J. Am. Ceram. Soc. 65 (1982) 539.

Google Scholar