Preparation of Sub-Micrometre Size Platinum Particles via Chemical Reduction of Hexachloroplatinic Acid in Aqueous Solution

Article Preview

Abstract:

The sub-micrometre size platinum particles via chemical reduction of hexachloroplatinic acid in aqueous solution was investigated by UV-Visible Spectroscopy, Transmission Electron Microscopy, X-ray diffraction and FTIR Spectroscopy. Hydrazine hydrate was used as the reducing agent, and polyvinylpyrrolidone (PVP-K30) was used for stabilizing the particles. By varying the amount of PVP-K30 the average diameter of the platinum particles could be adjusted. The TEM and XRD results revealed that the final sub-micrometre size Pt particles were the result of an aggregation of small (~5 nm) nanoparticles. The UV-Visible Spectroscopy and FTIR Spectroscopy investigations indicates the mechanism of anti-aggregation of Pt particles by the steric effect of PVP-K30.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-51

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Roucoux, J. Schulz and H. Patin, Chem. Rev. 102 (2002) 3757.

Google Scholar

[2] Q. -S. Chen, Z. -Y. Zhou, F. J. Vidal-lglesias, et al. J. Am. Chem. Soc. 33 (2011) 12930.

Google Scholar

[3] D. van der Vliet, C. Wang, M. Debe, et al., Electrochim. Acta. 56 (2011) 8695.

Google Scholar

[4] Y. Dirix, C. Bastiaansen, W. Caseri. P. Smith, Adv. Mater. 3 (1999) pp.223-227.

Google Scholar

[5] G. A. Ozin, M.P. Andrews, Chem. Mater. 1 (1989) pp.174-187.

Google Scholar

[6] Y.J. Yamashita, Y. Hosono and K. Itsumi, Jpn. J. Appl. Phys. 45 (2006) 4648.

Google Scholar

[7] U. Simon, G. Schon: Handbook of Nanostructured Materials and Nanotechnology. (2000) pp.131-178.

Google Scholar

[8] T. -H. Tran and T. -D. Nguyen, Colloids Surf. B: Biointerfaces. 88 (2011) 1.

Google Scholar

[9] Y. Yamauchi and K. Kuroda, Chem. Asian J. 3 (2008) 664.

Google Scholar

[10] D. -H. Chen, J. -J. Yeh and T. -C. Huang, J. Colloid Interface Sci. 215 (1999) 159.

Google Scholar

[11] N. Varghese and C. N. R. Rao, J. Colloid Interface Sci. 365 (2012) 117.

Google Scholar

[12] D. R. Nieto, F. Santese, R. Toth, et al., ACS Appl. Mater. Interfaces. 4 (2012) 2855.

Google Scholar

[13] H. Ataee-Esfahani, L. Wang, Y. Nemoto and Y. Yamauchi, Chem. Mater. 22 (2010) 6310.

Google Scholar

[14] Y. Song, Y. Yang, C. J. Medforth, et al., J. Am. Chem. Soc. 126 (2004) 635.

Google Scholar

[15] Zuo, X.; Liu, H.; Guo, D. Tetrahedron Lett. 55 (1999) 7787-7804.

Google Scholar

[16] Zuo, X.; Liu, H.; Liu, M. Tetrahedron Lett. 39 (1998) 1941-(1944).

Google Scholar

[17] R. Zsigmondy and P. Scherrer, Kolloidchemie: Ein Lehrbuch, 3rd Edn. Leipzig, Germany, (1920).

Google Scholar

[18] McClune, W. F. Powder Diffraction File Alphabetical Index Inorganic Phase; JCPDS: Swarthmore, PA, (1980).

Google Scholar

[19] A.R. Wilson, A.S. Hussein, P. Murugaraj, C. Rix, D. Mainwaring. 4934 (2002) 70-77.

Google Scholar

[20] J. Park and V. Privman, Recent Res. Dev. Stat. Phys. 1 (2000) 1.

Google Scholar