Solvothermal Synthesis of Carbon-Coated Nickel Nanoparticles in Ionic Liquid

Article Preview

Abstract:

Carbon-coated nickel nanoparticles were synthesized by solvothermal method in 1-buty-3-methylimidazolium tetrafluoraborate ionic liquid. The obtained products are characterized by X-ray powder diffraction (XRD), Raman spectroscopy, infrared spectroscopy and transmission electron microscopy (TEM). The magnetic properties of carbon-coated nickel nanoparticles have been investigated by vibrating sample magnetometry (VSM). It was found that the carbon-coated nickel nanoparticles showed excellent magnetic properties. The present route may give researchers more choices for preparing other carbon-coated transition metal nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

52-55

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Waller, Z.P. Shan, L. Marchese, G. Tartaglione, W.Z. Zhou, J.C. Jansen, T. Maschmeyer, Chem. –Eur. J. 10 (2004) 4970.

DOI: 10.1002/chem.200400343

Google Scholar

[2] H.G. Yang, H.C. Zeng, J. Am. Chem. Soc. 127 (2005) 270.

Google Scholar

[3] S.H. Sun, C.D. Murray, D. Weller, L. Folks, A. Moser, Science, 287 (2000) (1989).

Google Scholar

[4] T. Hyeon, Chem. Commun., (2003) 927.

Google Scholar

[5] S. Subramoney, Adv. Mater. 10 (1998) 1157.

Google Scholar

[6] V.P. Dravid, J.J. Host, M.H. Teng, B. Elliott, J. Hwang, D.L. Johnson, T.O. Mason, J.R. Weertman, Nature. 374 (1995) 602.

DOI: 10.1038/374602a0

Google Scholar

[7] W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature. 347 (1990) 354.

Google Scholar

[8] J. Ling, Y. Liu, G. M. Hao, X.G. Zhang, Mater. Sci. Eng. B100 (2003) 186.

Google Scholar

[9] S.V. Pol, V.G. Pol, A. Gedanken, Chem. A Eur. J. 10 (2004) 4467.

Google Scholar

[10] X.D. Mu, D.G. Evans, Y.A. Kou, Catal. Lett. 97 (2004) 151.

Google Scholar

[11] C.W. Scheeren, G. Machado, S.R. Teixeira, J. Morais, J.B. Domingos, J. Dupont, J. Phys. Chem. B110 (2006) 13011.

Google Scholar

[12] Y. Zhu, W. Wang, R. Qi, X. Hu, Angew. Chem., Int. Ed. 43 (2004) 1410.

Google Scholar

[13] G.S. Fonseca, A.P. Umpierre, P.E.P. Fichtner, S.R. Teixeira and J. Dupont: Chem. Eur. J. 9 (2003) 3263.

Google Scholar

[14] M.A. Firestone, D.L. Dietz, S. Seifert, S. Trasobares, D.J. Miller, N.J. Zaluzec, Small. 7(2005) 754.

DOI: 10.1002/smll.200500030

Google Scholar

[15] Y. Wang, H. Yang, J. Am. Chem. Soc. 127 (2005) 5316.

Google Scholar

[16] S.M. Zhang, C.L. Zhang, Z.S. Wu, Z.J. Zhang, H.X. Dang, W.M. Liu, Q.J. Xue, Acta Chim. Sinica. 62 (2004) 1443.

Google Scholar

[17] J. Jiang, Y. Zhu, J. Phys. Chem. B109 (2005) 4361.

Google Scholar

[18] T. Nakashima, N. Kimizuka, J. Am. Chem. Soc. 125 (2003) 6386.

Google Scholar

[19] J.H. Hwang, V.P. Dravid, M.H. Tengl, J. Mater. Res., 12 (1997) 1076.

Google Scholar