Comparison of Spectral Reflectance and Multispectrally Induced Fluorescence to Determine Winter Wheat Nitrogen Deficit

Article Preview

Abstract:

Technical and technological aspects of variable rate nitrogen fertilization receive much attention nowadays. Current commercial technology is based on the use of spectral reflectance of crop. However, these have some limitations as variety dependence, crop health effect and limited use in more developed growth stages. New parameters overcoming these problems need to be assessed and their potential in precision agriculture should be considered. Multispectrally induced fluorescence is a progressive method. In addition to chlorophyll content, it allows to determine phenolic compounds, which is a product of metabolism of the plant under nitrogen deficit and is considered as the most exact indicator of nitrogen deficit. Comparing the spectral reflectance indices (normalized difference vegetation index – NDVI and normalized difference red edge index – NDRE) and multispectral fluorescence index (nitrogen balance index – NBI), these performed similarly in terms of determining the leaves biomass and nitrogen content in %, NDRE and NBI reflected significantly also aboveground N; however, only the correlation of NDVI reflected with N uptake and with leaf area was highly significant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-133

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. M. Alley, D. E. Brann, J. L. Hammons, P. Scharf, W. E. Baethgen, Nitrogen management for winter wheat: Principles and recommendations, Virginia Cooperative Extension Publication 424-026, 1999, information on: http: /www. ext. vt. edu/pubs/grains/424-026/424-026. html#L4.

Google Scholar

[2] M. Diacono, P. Rubino, F. Montemurro, Precision nitrogen management of wheat. A review, Agron. Sustain. Dev., 33 (2013) 219–241.

DOI: 10.1007/s13593-012-0111-z

Google Scholar

[3] G. A. Wood, J.P. Welsh, R.J. Godwin, J.C. Taylor, M. Earl, S.M. Knight, Real-time measures of canopy size as a basis for spatially varying nitrogen applications to winter wheat sown at different seed rates, Biosystems Engineering, 84(4) (2003b) 513–531.

DOI: 10.1016/s1537-5110(03)00006-0

Google Scholar

[4] C. L. Wiegand, S. J. Maas, J. K. Aase, J. L. Hatfiled, P. J. Pinter, R. D. Jackson et al., Multi-site analyses of specral-biolhysical data for wheat, Remote Sensing of Environment, 4 (1992) 1–21.

DOI: 10.1016/0034-4257(92)90064-q

Google Scholar

[5] L. D. Hinzman, M. E. Bauer, S. T. Daughtry, Effect of nitrogen fertilization on growth and reflectance characteristics of winter wheat, Remote Sensing of Environment, 19 (1986) 47–61.

DOI: 10.1016/0034-4257(86)90040-4

Google Scholar

[6] L. Serrano, I. Filella, J. Penuelas, Remote sensing of biomass and yield of winter wheat under different nitrogen supplies, Crop Science, 40 (2000) 723–731.

DOI: 10.2135/cropsci2000.403723x

Google Scholar

[7] N. Aparicio, D. Villegas, J. L. Araus, J. Casadesus, C. Royo, Relationship between growth traits and spectral vegetation indices in durum wheat, Crop Sciences, 42 (2002) 1547–1555.

DOI: 10.2135/cropsci2002.1547

Google Scholar

[8] E. Boegh, H. Søgaard, N. Broge, C. B. Hasager, N. O. Jensen, K. Schelde, A. Thomsen, Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture, Remote Sensing of Environment, 81 (2002).

DOI: 10.1016/s0034-4257(01)00342-x

Google Scholar

[9] N. H. Broge, J. V. Mortensen, Deriving green area index and canopy chlorophyll density of winter wheat from spectral reflectance data, Remote Sensing of Environment, 81 (2002) 45–47.

DOI: 10.1016/s0034-4257(01)00332-7

Google Scholar

[10] P. M. Hansen, J. K. Schjoerring, Reflectance measurement of canopy biomass and nitrogen status in heat crops using normalized difference vegetation indices and partial least squares regression, Remote Sensing of Environment, 86 (2003) 542–553.

DOI: 10.1016/s0034-4257(03)00131-7

Google Scholar

[11] I. M. Scotford, P. CH. Miller, Applications of spectral reflectance techniques in Northern European cereal production: A review, Biosystems Engineering, 90(3) (2005) 235–250.

DOI: 10.1016/j.biosystemseng.2004.11.010

Google Scholar

[12] I. M. Scotford, P. CH. Miller, Estimating tiller density and leaf area index of winter wheat using spectral reflectance and ultrasonic sensing techniques, Biosystems Engineering, 89(4) (2004) 395–408.

DOI: 10.1016/j.biosystemseng.2004.08.019

Google Scholar

[13] F. Li, Y. Miao, S. D. Hennig, M. L. Gnyp, X. Chen, L. Jia, G. Bareth, Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages, Precision Agriculture, 11(4) (2010) 335–357.

DOI: 10.1007/s11119-010-9165-6

Google Scholar

[14] D. D. Francis, Performance of a crop canopy reflectance sensor to assess chlorophyll content, 2005, information on http: /hydrolab. arsusda. gov/RSinARS/cssa/francis. pdf.

Google Scholar

[15] C. Zhao, Z. Wang, J. Wang, W. Huang, T. Guo, Early detection of canopy nitrogen deficiency in winter wheat (Triticum aestivum, L. ) based on hyperspectral measurement of canopy chlorophyll status, New Zealand Journal of Crop and Horticulture Science, 39 (2011).

DOI: 10.1080/01140671.2011.588713

Google Scholar

[16] M. Živčák, M. Brestič, K. Olšovská, P. Slamka, Performance index as a sensitive indicator of water stress in Triticum aestivum, L., Plant Soil and Environment, 54 (2008) 133–139.

DOI: 10.17221/392-pse

Google Scholar

[17] M. Živčák, K. Olšovská, P. Slamka, J. Galambošová, V. Rataj, H.B. Shao, M. Brestič, Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency, Plant Soil and Environment, 60 (2014).

DOI: 10.17221/73/2014-pse

Google Scholar

[18] B. Borawska-Jarmułowicz, G. Mastalerczuk, S. Pietkiewicz, M. H. Kalaji, Low temperature and hardening effects on photosynthetic apparatus efficiency and survival of forage grass varieties, Plant, Soil and Environment, 60 (2014) 177–183.

DOI: 10.17221/57/2014-pse

Google Scholar

[19] H. M Kalaji, G. Schansker, R. J. Ladle et al., Frequently asked questions about in vivo chlorophyll fluorescence: practical issues, Photosynthesis Research (in press) (2014), doi: 10. 1007/s11120-014-0024-6.

Google Scholar

[20] B. Limbrunner, F. X. Maidl, Non-contact measurement of the actual nitrogen status of winter wheat canopies by laser-induced chlorophyll fluorescence, in: J. Stafford (Ed. ), Precision Agriculture '07, Papers presented at the 6th European Conference on Precision Agriculture, Skiathos, Greece, Wageningen Academic Publ., Wageningen, 2007, p.173.

DOI: 10.1007/s11119-004-1031-y

Google Scholar

[21] H. J. Heege, S. Reusch, E. Thiessen, Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany, Precision Agriculture, 9(3) (2008) 115–131.

DOI: 10.1007/s11119-008-9055-3

Google Scholar

[22] V. Martinon, E. M. Fadaili, S. Evain, C. Zecha, Multiplex®: An innovative optical sensor for diagnosis, mapping and management of nitrogen on wheat, Precision Agriculture 2011, ECPA, 8 (2011) 547–561.

Google Scholar

[23] N. Tremblay, Z. Wang, Z. G. Cerovic, Sensing crop nitrogen status with fluorescence indicators. A review, Agron. Sustain. Dev., 32 (2012) 451–464.

DOI: 10.1007/s13593-011-0041-1

Google Scholar

[24] F. Li, B. Mistele, Y. Hu, X. Yue, S. Yue, Y. Miao, X. Chen, Z. Cui, Q. Meng, U. Schmidhalter, Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany, Field Crops Research, 138 (2012).

DOI: 10.1016/j.fcr.2012.09.002

Google Scholar

[25] F. Li, B. Mistele, Y. Hu, X. Chen, U. Schmidhalter, Optimising three-band spectral indices to assess aerial N concentration, N uptake and aboveground biomass of winter wheat remotely in China and Germany, Journal of Photogrammetry and Remote Sensing, 92 (2014).

DOI: 10.1016/j.isprsjprs.2014.03.006

Google Scholar