Monitoring Liquid Radioactive Waste Discharges Released from Nuclear Power Plant

Article Preview

Abstract:

The purpose of this paper is to monitor the amount of discharged radioactive liquid discharges from nuclear power plant and propose ways to reduce the amount given. The report consists of a literature review, objective and methodology proposed. The methodology and results consist of distribution of waste, originally liquid radioactive waste (LRW), a source of LRW, a year-round monitoring of liquid effluents of nuclear power plant and eventual adoption of protective measures. Tritium, as one of the LRW, is a radioactive substance having a negative impact on the environment. In the course of our research, we have found an increased dose of tritium over permitted annual limit. We investigated the impact of tritium on the environment and took protective measures to reduce the amount of tritium released in the environment. The report may serve as a basis for other nuclear power plants and the entire nuclear industry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-90

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. L. Lucas, M. P. Unterweger, Comprehensive review and critical evaluation of the half-life of tritium, J. Res. Natl. Inst. Stand. Technol., 105(4) (2000) 541–549.

DOI: 10.6028/jres.105.043

Google Scholar

[2] C. Varlam, I. Stefanescu, I. Faurescu, I. Vagner, D. Faurescu, D. Bogdan, Establishing routine procedure for environmental tritium concentration at ICITI, Rom. J. Phys., 56(1–2) (2011) 233–239.

DOI: 10.1080/15361055.2017.1289451

Google Scholar

[3] M. J. Madruga, M. M. Sequeria, A. R. Gomes, Determination of tritium in waters by liquid scintillation counting, in: J. Eikenberg, M. Jaggi, H. Beer, H. Baehrle (Eds. ), LSC 2008, Advances in Liquid Scintillation Spectrometry, 2008, p.353–359.

Google Scholar

[4] B. Bridges, Effectiveness of tritium beta particles, J. Radiol. Prot., 28 (2008) 1–3.

Google Scholar

[5] M. P. Little, B. E. Lambert, Systematic review of experimental studies on the relative biological effectiveness of tritium, Radiat. Environ. Biophys., 47 (2008) 71–93.

DOI: 10.1007/s00411-007-0143-y

Google Scholar

[6] M. P. Little, R. Wakeford, Systematic review of experimental studies on the relative biological effectiveness of tritium, J. Radiol. Prot., 28 (2008) 9–32.

Google Scholar

[7] T. Pauliček, P. Čičo, J. Zaujec, M. Burda, Risk assessment and actions to reduction of risk in explosive environment, Management Systems in Production Engineering, 7(3) (2012) 18–20.

Google Scholar

[8] J. Žitňanský, P. Polák, Rezné podmienky a ich vplyv na kvalitu produktu vzhľadom na ekologizáciu výroby, in: Quality, Technologies, Diagnostics of Technical Systems, SUA in Nitra, Nitra, 2013, p.176–180.

Google Scholar

[9] J. Tomáš, R. Drlička, V. Kročko, Dry machining as alternative technology for environment protection improvement, Acta Technologica Agriculturae, 5(3) (2002) 80–82.

Google Scholar

[10] STN EN ISO 14001: 2005. Environmental management certificate.

Google Scholar

[11] J. Hrubec, E. Virčíková, Integrovaný manažérsky system, 1st ed., SUA in Nitra, Nitra, (2009).

Google Scholar

[12] J. Žarnovský, V. Peťková, R. Drlička, J. Dobránsky, Air quality improvement by reduction of gas turbines emissions, Applied Mechanics and Materials, 308 (2013) 159–164.

DOI: 10.4028/www.scientific.net/amm.308.159

Google Scholar

[13] J. Žarnovský, J. Žitňanský, I. Kováč, R. Mikuš, M. Šopor, Analýza výfukových plynov vo fáze zohrievania motora, in: DIAGO 2011 : technická diagnostika strojů a výrobných zařízení, Vysoká škola báňská – Technická univerzita, Ostrava, 2011, p.555.

DOI: 10.15584/eti.2018.4.48

Google Scholar

[14] Information on: http: /www. seas. sk.

Google Scholar

[15] P. Polák, J. Žitňanský, Integrované systémy riadenia, 1st ed., SUA in Nitra, Nitra, (2013).

Google Scholar

[16] P. Jean-Baptiste, E. Fourré, The distribution of tritium between water and suspended matter in a laboratory experiment exposing sediment to tritiated water , Journal of Environmental Radioactivity, 116 (2013) 193–196.

DOI: 10.1016/j.jenvrad.2012.11.004

Google Scholar

[17] G. J. Hunt, T. A. Bailey, S. B. Jenkinson, K. S. Leonard, Enhancement of tritium concentrations on uptake by marine biota: experience from UK coastal waters, J. Radiol. Prot., 30 (2010) 73–83.

DOI: 10.1088/0952-4746/30/1/n01

Google Scholar

[18] M. Masson, F. Siclet, M. Fournier, A. Maigret, G. Gontier, P. Bailly du Bois, Tritium along the French coast of the English Channel, Radioprotection, 40 (2005) S621–S627.

DOI: 10.1051/radiopro:2005s1-091

Google Scholar

[19] J. Nikolov, N. Todorovic, M. Jankovic, M. Vostinar, I. Bikit, M. Veskovic, Different methods for tritium determination in surface water by LSC, Applied Radiation and Isotopes, 71(1) (2013).

DOI: 10.1016/j.apradiso.2012.09.015

Google Scholar