In Situ Formation of Ti Matrix Composites Reinforced Nanometric TiC by Powder Metallurgy Technique

Article Preview

Abstract:

In-situ formation of nanometric TiC reinforcements based on Ti matrix composites were researched by a novel preparation method, which including glucose polymers coating and powder metallurgy. The results showed that TiC nanoparticles were homogeneously distributed in Ti matrix, and the as-sintered Ti-TiC composites displayed excellent compressive properties which ultimate compressive strength was 2500 MPa, yield strength was 1450 MPa and strain to fracture was 53 %.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

100-103

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.C. Tjong, Y.W. Mai: Compos. Sci. Technol Vol. 68 (2008), p.583.

Google Scholar

[2] H.Z. Liu, B. Yao, L.H. Wang, A.M. Wang, B.Z. Ding, Z.Q. Hu: Mater. Lett Vol. 27 (1996), p.183.

Google Scholar

[3] T. Kuzumaki, O. Ujiie, H. Ichinose, K. Ito: Adv. Eng. Mater Vol. 27 (2000), p.416.

Google Scholar

[4] X. Feng, J.H. Sui, Y. Feng, W. Cai: Mater. Sci. Eng. A Vol. 527 (2010), p.1586.

Google Scholar

[5] S.F. Li, B. Sun, H. Imai, K. Kondoh: Carbon Vol. 61 (2013), p.216.

Google Scholar

[6] K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, B. Fugetsu: Compos. Sci. Technol Vol. 69 (2009), p.1077.

Google Scholar

[7] C. Even, C. Arvieu, J.M. Quenisset: Compos. Sci. Technol Vol. 68 (2008), p.1273.

Google Scholar

[8] S.J. Zhu, D. Mukherji, W. Chen, Y.X. Lu, Z.G. Wang, R.P. Wahi:Mater. Sci. Eng. A Vol. 256 (1998), p.301.

Google Scholar

[9] D.D. Gu, G.B. Meng, C. Li, W. Meinersb, R. Poprawe: Scripta. Mater Vol. 67 (2012), p.185.

Google Scholar

[10] S.D. Luo, Q. Li, J. Tian, C. Wang, M. Yan, G.B. Schaffer, M. Qian: Scripta. Mater Vol. 69 (2013), p.29.

Google Scholar

[11] I. Montealegre Meléndez, E. Neubauer, P. Angerer, H. Danninger, J.M. Torralba: Compos. Sci. Technol Vol. 71 (2011), p.1154.

Google Scholar

[12] I. Montealegre Meléndez, E. Neubauer, H. Danninger: Mater. Sci. Eng. A Vol. 527 (2010), p.4466.

Google Scholar

[13] C.H. Caceres, G.E. Mann, J.R. Griffiths: Metall. Mater. Trans. A Vol. 42 (2011), p. (1950).

Google Scholar

[14] C.H. Caceres, P. Lukac, A. Blake: Philos. Mag Vol. 88 (2008), p.991.

Google Scholar

[15] W. Xu, X. Wu, D. Sadedin, G. Wellwood, K. Xia: Appl. Phys. Lett Vol. 92 (2008), p.011294.

Google Scholar

[16] L.V. Louzguina-Luzgina, D.V. Louzguine-Luzgin, A. Inoue: J. Alloy. Compd Vol. 474 (2009), p.131.

Google Scholar

[17] Y.J. Huang, J. Shen, J.F. Sun: Appl. Phys. Lett Vol. 90 (2007), p.081919.

Google Scholar

[18] G. He, J. Eckert, W. Loser, L. Schultz: Nat. Mater Vol. 2 (2003), p.33.

Google Scholar