Analysis of Marine Fouling Microbial Communities Adhering to Carboxyl Modified MWCNTs-Filled PDMS Coating Surface during the Initial Stage of Biofouling

Article Preview

Abstract:

In this study, a polydimethylsiloxane (PDMS) coating filled with low concentrations of selected carboxyl modified multi-walled carbon nanotubes (cMWCNTs) has been fabricated. The antifouling properties of cMWCNTs-filled PDMS coatings were tested and the diversity level and succession phenomenon of marine fouling microbial communities were analyzed using single strand conformation polymorphism (SSCP) method. Marine adhesion test showed that cMWCNTs-filled PDMS coating presented decent antifouling property. SSCP analysis revealed that fouling prokaryotic species on the cMWCNTs-filled PDMS coating presented high and stable diversity level while diversity and dominance level of fouling eukaryotic species were relatively low, similar to those on PDMS alone and other four antifouling coating surface without nanoparticles, suggesting that the main mechanism by which cMWCNTs-mediated surface nanostructure improves antifouling capacity may have no direct relationship with the patterns in the context of succession dynamics of prokaryotic and eukaryotic microbial communities.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

155-161

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fusetani N. Nat. Prod. Rep. Vol. 21(2004), pp.94-104.

Google Scholar

[2] Bixler GD, Bhushan B. Philos. Trans. A Math. Phys. Eng. Sci. Vol. 370(2012), pp.2381-2417.

Google Scholar

[3] Callow ME, Callow JA. Biologist. Vol. 49(2002), pp.1-5.

Google Scholar

[4] Yebra DM, Kiil S, Dam-Johansen K. Prog. Org. Coat. Vol. 50(2004), pp.75-104.

Google Scholar

[5] Alzieu C. Ecotoxicology. Vol. 9(2000), pp.71-76.

Google Scholar

[6] Canning-Clode J, Fofonoff P, Riedel GF, Torchin M, Ruiz GM. PloS one. Vol. 6(2011), p. e18026.

DOI: 10.1371/journal.pone.0018026

Google Scholar

[7] Guardiola FA, Cuesta A, Meseguer J, Esteban MA. Int. J. Mol. Sci. Vol. 13(2012), pp.1541-1560.

Google Scholar

[8] Dafforn KA, Lewis JA, Johnston EL. Mar. Pollut. Bull. Vol. 62(2011), pp.453-465.

Google Scholar

[9] Ma C, Yang H, Zhou X, Wu B, Zhang G. Colloid. Surface. B, Biointerfaces. Vol. 100(2012), pp.31-35.

Google Scholar

[10] Hoipkemeier-Wilson L, Schumacher JF, Carman ML, et al. Biofouling. Vol. 20(2004), pp.53-63.

Google Scholar

[11] Chaudhury MK, Finlay JA, Chung JY, Callow ME, Callow JA. Biofouling. Vol. 21(2005), pp.41-48.

Google Scholar

[12] Sharma S, Desai TA. J. Nanosci. Nanotechno. Vol. 5(2005), pp.235-243.

Google Scholar

[13] Tawfick S, Deng X, Hart AJ, Lahann J. Phys. Chem. Chem. Phys. Vol. 12(2010), pp.4446-4451.

Google Scholar

[14] Beigbeder A, Mincheva R, Pettitt ME, et al. J. Nanosci. Nanotechno. Vol. 10(2010), pp.2972-2978.

Google Scholar

[15] Beigbeder A, Degee P, Conlan SL, et al. Biofouling. Vol. 24(2008), pp.291-302.

Google Scholar

[16] Beigbeder A, Linares M, Devalckenaere M, et al. Adv. Mater. Vol. 20(2008), pp.1003-1007.

Google Scholar

[17] Murosaki T, Noguchi T, Kakugo A, et al. Biofouling. Vol. 25(2009), pp.313-320.

Google Scholar

[18] Briand JF. Biofouling. Vol. 25(2009), pp.297-311.

Google Scholar

[19] Zhao M, Chen H, Wang X, et al. Mol. Biol. Rep. Vol. 36(2009), pp.1387-1391.

Google Scholar

[20] Rodriguez F, Cai D, Teng Y, Spooner D. Am. J. Bot. Vol. 98(2011), pp.1061-1067.

Google Scholar

[21] Jack AG, Joshua AS, Gregory J C, et al. ISME J. Vol. 6(2012), p.298–308.

Google Scholar

[22] Sun W1, Zhang F, He L, Li Z. Microb. Ecol. Vol. 67(2014), pp.942-50.

Google Scholar

[23] Robert BJ, Cynthia CG, Daphne LS, et al. Appl. Environ. Microb. Vol. 47(1984), pp.1005-1011.

Google Scholar

[24] Ling GC, Low MH, Erken M, et al. Biofouling. Vol. 30(2014),. pp.323-35.

Google Scholar