Effect of Beeswax, Palmitic Acid and Stearic Acid on Soybean Protein-Isolation/Carboxymethyl Cellulose Composite Films

Article Preview

Abstract:

The effects of beeswax, palmitic acid and stearic acid on properties of soybean protein-isolate/carboxymethyl cellulose composite films were compared. The palmitic acid leaded to a higher tensile strength, water vapor barrier and oxygen barrier of composite films than the beeswax and stearic acid. However, the palmitic acid lowered the elongation at break and leaded to a slight yellow. Hence, the palmitic acid was a better option to improve the tensile strength and water vapor barrier of soybean protein-isolate/carboxymethyl cellulose composite films.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

240-243

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.N. Tharanathan: Trends Food Sci. Technol. Vol 14 (2003), p.71.

Google Scholar

[2] D. Jia, Y. Fang, K. Yao: Food Bioprod. Process. Vol 87 (2009), p.7.

Google Scholar

[3] P. Lodha, N. Netravali: Indust. Crops Prod. Vol 21 (2005), p.49.

Google Scholar

[4] X. Zhao, K. Guo, C. Zhang, Y. Ma, X. Li: Adv. Mater. Res. Vol 335-336 (2011), p.312.

Google Scholar

[5] C. Zhang, Y. Ma, X. Zhao, D. Ma: J. Food Sci. Vol 75 (2010), p. C493.

Google Scholar

[6] C. Zhang, K. Guo, Y. Ma, D. Ma, X. Li, X. Zhao: Int. J. Food Sci. Technol. Vol 45 (2010), p.1801.

Google Scholar

[7] G.A. Denavi, M. Pérez-Mateos, M.C. Añón, P. Montero, A.N. Mauri, M.C. Gómez-Guillén: Food Hydrocolloid. Vol 23 (2009), p. (2094).

DOI: 10.1016/j.foodhyd.2009.03.007

Google Scholar

[8] T.H. McHugh: Food/Nahrung, Vol 44 (2000), p.148.

Google Scholar

[9] V. Morillon, F. Debeaufort, G. Blond, M. Capelle, A. Voilley: Cri. Rev. Food Sci. Nut. Vol 42 (2002), p.67.

Google Scholar

[10] H.J. Park, J.M. Bunn, P.J. Weller: Trans. ASAE. Vol 37 (1994), p.1281.

Google Scholar

[11] A. Jiménez, M.J. Fabra, P. Talens, A. Chiralt: Carbohyd. Polym. Vol 82 (2010), p.585.

Google Scholar

[12] Y. Zahedi, B. Ghanbarzadeh, N. Sedaghat: J. Food Eng. Vol 100 (2009), p.102.

Google Scholar

[13] N. Diftis, V. Kiosseoglou: Food Chemistry, Vol 81 (2003), p.1.

Google Scholar

[14] C. Zhang, Y. Ma, K. Guo, X. Zhao: J. Agric. Food Chem. Vol 60 (2012), p.2219.

Google Scholar

[15] J. Gonzalez-Gutierrez, P. Partal, M. Garcia-Morales, C. Gallegos: Bioresource Technol. Vol 101 (2010), p. (2007).

Google Scholar

[16] ASTM D 882-01, Annual Book of ASTM Standards, American Society for Testing and Matericals, Philadelphia, PA (2001).

Google Scholar

[17] ASTM E 96-93, Annual Book of ASTM Standards, American Society for Testing and Matericals, Philadelphia, PA (1993).

Google Scholar

[18] ASTM D 3985-95, Annual Book of ASTM Standards, American Society for Testing and Matericals, Philadelphia, PA (1995).

Google Scholar

[19] A. Jiménez, M.J. Fabra, P. Talens, A. Chiralt: Food Hydrocolloid. Vol 26 (2012), p.302.

Google Scholar

[20] Y. Jiang, C.H. Tang, Q.B. Wen, L. Li, X.Q. Yang: Innov. Food Sci. Emerg. Technol. Vol 8 (2007), p.218.

Google Scholar

[21] L.C. Bertan, P.S. Tanada-Palmu, A.C. Siani, C.R.F. Grosso: Food Hydrocolloid. Vol 19 (2005), p.73.

Google Scholar

[22] M.A. García, M.N. Martino, N.E. Zaritzky: J. Food Sci. Vol 65 (2006), p.941.

Google Scholar

[23] V.C.R. Schmidt, L.M. Porto, J.B. Laurindo, F.C. Menegalli: Indust. Crops Prod. Vol 41 (2013), p.227.

Google Scholar

[24] J.W. Park, R.F. Testin, H.J. Park, P.J. Vergano, C.L. Weller: J. Food Sci. Vol 59 (1994), p.916.

Google Scholar

[25] L. Yang, A.T. Paulson: Food Res. Int. Vol 33 (2000), p.571.

Google Scholar