[1]
D. Shi, H. S. Cho, Y. Chen, H. Xu, H. Gu, J. Lian, W. Wang, G. Liu, C. Huth, L. Wang, R. C. Ewing, S. Budko, G. M. Pauletti, Z. Dong. Fluorescent Polystyrene-Fe3O4 composite nanospheres for in vivo imaging and hyperthermia, Adv. Mater. 21 (2009).
DOI: 10.1002/adma.200803159
Google Scholar
[2]
Z. Zhou, C. Zhang, Q. Qian, J. Ma, P. Huang, X. Zhang, L. Pan, G. Gao, H. Fu, S. Fu, H. Song, X. Zhi, J. Ni, D. cui. Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging, J. Nanobiotech. 11 (2013).
DOI: 10.1186/1477-3155-11-17
Google Scholar
[3]
R. Sahoo, A. Roy, C. Ray, C. Mondal, Y. Negishi, S. M. Yusuf, A. Pal, T. Pal. Decoration of Fe3O4 base material with Pd loaded CdS nanoparticle for superior photocatalystic efficiency, J. Phys. Chem. C, 118 (2014)11485-11494.
DOI: 10.1021/jp503393x
Google Scholar
[4]
G. Mutyalan, R. N. Vijayakameswara, H. Himadri, P. Kumar, J. D. Sarma, R. Shunmugam. Biodegradable magnetic nanocarrier for stimuli responsive drug release, Macromole. 47 (2014) 2703-2711.
DOI: 10.1021/ma500384m
Google Scholar
[5]
M. T. Ramesan. Fabrication, characterization, and properties of poly(ethylene-co-vinyl acetate)/magnetite nanocomposites, J. Appl. Polym. Sci. 131 (2014) 40116.
DOI: 10.1002/app.40116
Google Scholar
[6]
J. Gu , W. Zhang, X. Yang. Preparation of a superparamagnetic MRI contrast agent with a tumor targeting function, Mater. Lett. 94 (2013) 8-10.
DOI: 10.1016/j.matlet.2012.12.030
Google Scholar
[7]
Z. Liu, L. Twan, J. Ehling, F. Stanley, B. Jöry, K. Fabian, G. Jessica. Iron oxide nanoparticles-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging, Biomaterials, 32 (2011) 6155-6163.
DOI: 10.1016/j.biomaterials.2011.05.019
Google Scholar
[8]
F. Zhang, Y. Shi, Z. Zhao, B. Ma, L. Wei, L. Lu. Amino-functionalized Fe3O4/SiO2 magnetic submicron composites and In3+ ion adsorption properties, J. Mater. Sci. 49 (2014) 3478-3483.
DOI: 10.1007/s10853-014-8060-3
Google Scholar
[9]
M. Lei, T. Chao, Z. Lei. Preparation and characterization of hollow magnetic composite nanoparticles for cisplatin delivery, J. Nanopart. Res. 16 (2014) 2410.
DOI: 10.1007/s11051-014-2410-6
Google Scholar
[10]
M. Coskun, M. Korkmaz. The effect of SiO2 shell thickness on the magnetic properties of ZnFe2O4 nanoparticles, J. Nanopart. Res. 16 (2014) 2316.
DOI: 10.1007/s11051-014-2316-3
Google Scholar
[11]
X. Zhao. Multifunctional superparamagnetic Fe3O4@SiO2 core/shell nanoparticles: design and application for cell imaging. J. Biomed. Nanotech. 10 (2014) 262-270.
Google Scholar
[12]
M. Kushida, T. Koide, I. Odada, Y. Imaizumi, K. Kawasaki, T. Sugawara. Fabrication of Fe3O4/SiO2 core-shell nanoparticle monolayer as catalyst for carbon nanotube growth using Langmuir-Blodgett technique. Thin Solid Films, 537 (2013) 252-255.
DOI: 10.1016/j.tsf.2013.04.031
Google Scholar
[13]
Z. Lu, J. Dai, X. Song, G. Wang, W. Yang. Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles[J]. Colloid Surf. A-Physicochem. Eng. Asp. 317 (2008) 450-456.
DOI: 10.1016/j.colsurfa.2007.11.020
Google Scholar
[14]
X. Du, J. He, J. Zhu, L. Sun, S. An. Ag-deposited silica-coated Fe3O4 magnetic nanoparticles catalyzed reduction of p-nitrophenol. Appl. Surf. Sci. 258 (2012) 2717-2723.
DOI: 10.1016/j.apsusc.2011.10.122
Google Scholar
[15]
J. Liu, Z. Sun, Y. Deng, Y. Zou, C. Li, X. Guo, L. Xiong, Y. Gao, F. Li, D. Zhao. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem. Int. Edit. 48 (2009) 5875-5879.
DOI: 10.1002/anie.200901566
Google Scholar
[16]
Z. Teng, C. Sun, X. Su, Y. Liu, Y. Tang, Y. Zhao, G. Chen, F. Yan, N. Yang, C. Wang, G. Lu, Superparamagnetic high-magnetization composite spheres with highly aminated ordered mesoporous silica shell for biomedical applications. J. Mater. Chem. B 1 (2013).
DOI: 10.1039/c3tb20844c
Google Scholar
[17]
Y. Deng, Y. Cai, Z. Sun, J. Liu, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang, D. Zhao, Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. J. Am. Chem. Soc. 132 (2010).
DOI: 10.1021/ja1025744
Google Scholar
[18]
Y. Deng, D. Qi, C. Deng, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 130 (2008) 28-29.
DOI: 10.1021/ja0777584.s002
Google Scholar
[19]
X. Zhang, H. Niu, J. Yan, X. Zhang, D. Zhao, Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloid Surf. A-Physicochem. Eng. Asp. 375 (2011).
DOI: 10.1016/j.colsurfa.2010.12.009
Google Scholar
[20]
P. Saint-cricq, J. Wang, A. Sugawara-narutaki, A. Shimojima, T. Okubo, A new synthesis of well-dispersed, core-shell Ag@SiO2 mesoporous nanoparticles using amino acids and sugars. J. Mater. Chem. B 1 (2013) 2451-2454.
DOI: 10.1039/c3tb20210k
Google Scholar