Effect of Alternating Traveling Magnetic Field on the Removal of Inclusions from Aluminum Melt

Article Preview

Abstract:

Alternating traveling magnetic field (TMF) was introduced to agglomerate the inclusions with a density smaller than surrounding melt. Primary silicon particles precipitating from the solidification process of hypereutectic Al-Si alloy was regarded as inclusions need removing. Results indicated that alternating TMF was more effective to promote the inclusions to agglomerate into clusters than downward TMF. The effect of alternating TMF to agglomerate the inclusions increases with the increase of current and frequency. There exists the best alternating time to get the best agglomeration effect. In this study, 10s is the best alternating time.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

55-60

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fu Gaosheng, Kang Jixing, Chen Wenzhe, Qian Kuangwu. Interactive mechanism between inclusions and hydrogen in molten aluminum [J]. The Chinese Journal of Nonferrous Metals, 1999, 95(1): 51-56. (in Chinese).

Google Scholar

[2] D. Shu, B.D. Sun, J. Wang, T.X. Li, Z.M. Xu, and Y.H. Zhou: Metall. Mater. Trans. B, 2000, vol. 31B, p.1527–33.

Google Scholar

[3] K. Li, J. Wang, D. Shu, T.X. Li, B.D. Sun, and Y.H. Zhou: Mater. Lett., 2002, vol. 56, p.215–20.

Google Scholar

[4] X.S. Zheng, Z. X. Li, Y.C. Wang: Sci. Technol. Adv. Mater, 2001, vol. 2, p.113–116.

Google Scholar

[5] Z.M. Xu, T.X. Li, and Y.H. Zhou. Metall. Mater. Trans. A, 2007, vol. 38A, p.1104–10.

Google Scholar

[6] Kolin. A: Science, 1953, vol. 117, p.134~37.

Google Scholar

[7] D. Shu, B.D. Sun, K. Li, T.X. Li, Z.M. Xu, and Y.H. Zhou: Mater. Lett ., 2002, vol. 55, p.322–26.

Google Scholar

[8] Park. J. P, Tananka. Y, Sassa. K and Asai. S: ISIJ International, 1994, pp.497-504.

Google Scholar

[9] Y. Tanaka, K. Sassa, K. Iwai, and S. Asai: Tetsu-to-Hagane´, 1995, vol. 81, p.1120–25.

Google Scholar

[10] Miki. Y, Kitaoka. H, Safuraya. T, Fujii. T, ISIJ International. 1992, vol. 32, p.142~49.

Google Scholar

[11] Lu. D. H, Jiang.Y. H, Guan.G. S et al. Jounral of Materials Processing Technology [J]. 2007, 189(1-3) : 13.

Google Scholar

[12] Y.J. He, Q.L. Li, W. Liu: Mater . Lett, 2011, vol. 65, p.1226–28.

Google Scholar

[13] Y.J. He, Q.L. Li, W. Liu: Metall. Mater. Trans. B, 2012, vol. 43, p.1149–55.

Google Scholar

[14] Minrui Gao, Qiulin Li, Dingguo Yang, Wei Liu. An investigation on the effect of alternating rotating magnetic field on the removal of inclusions from aluminum melt.

Google Scholar

[15] Y.C. Han, Q.L. Li, W. Liu and Y.J. He : Metall. Mater. Trans. A, 2012, vol. 43, pp.1400-04.

Google Scholar

[16] P.G. Saffman, J.S. Turner: J. Fluid Mech., 1956, vol. 1, p.16–30.

Google Scholar

[17] Leenov. D, Kolin. A: J. Chem. Phys. 1954, vol. 22, p.683~88.

Google Scholar

[18] Grants I, Gerbeth G. J Cryst Growth 2004; 269: 630-8.

Google Scholar