[1]
K. Åström, P. Hagander, J. Sternby, Zeros of sampled systems. Automatica, 20(1): 31-38, (1984).
DOI: 10.1016/0005-1098(84)90062-1
Google Scholar
[2]
C. Zeng, S. Liang, H. Li, Y. Su, Current development and future challenges for zero dynamics of discrete-time systems. Control Theory & Applications, 30(10): 1213-1230, 2013. (in Chinese).
Google Scholar
[3]
A. Isidori, The zero dynamics of a nonlinear system: from the origin to the latest progresses of a long successful story. European Journal of Control, 19(5): 369-378, (2013).
DOI: 10.1016/j.ejcon.2013.05.014
Google Scholar
[4]
J. I. Yuz, G. C. Goodwin, On sampled-data models for nonlinear systems. IEEE Transactions on Automatic Control, 50(10): 1477-1489, (2005).
DOI: 10.1109/tac.2005.856640
Google Scholar
[5]
S. Liang, X. Xian, M. Ishitobi, K. Xie, Stability of zeros of discrete-time multivariable systems with GSHF. International Journal of Innovative Computing, Information and Control, 6(7): 2917-2926, (2010).
DOI: 10.1109/icnsc.2009.4919306
Google Scholar
[6]
G. C. Goodwin, J. C. Aguero, M. E. Garrido, M. E. Salgado, J. I. Yuz, Sampling and sampled-data models: the interface between the continuous world and digital algorithms. IEEE Control Systems Magazine, 33(5): 34-53, (2013).
DOI: 10.1109/mcs.2013.2270403
Google Scholar
[7]
C. Zeng, S. Liang, Y. Su, Improving the asymptotic properties of discrete system zeros in fractional-order hold case. Journal of Applied Mathematics, 2013, (2013).
DOI: 10.1155/2013/268684
Google Scholar
[8]
U. Ugalde, R. Bárcena, K. Basterretxea, Generalized sampled-data hold functions with asymptotic zero-order hold behavior and polynomic reconstruction. Automatica, 48(6), 1171–1176, (2012).
DOI: 10.1016/j.automatica.2012.03.004
Google Scholar
[9]
M. Ishitobi, M. Nishi, S. Kunimatsu, Asymptotic properties and stability criteria of zeros of sampled-data models for decouplable MIMO systems, IEEE Transactions on Automatic Control, 58(11): 2985–2990, (2013).
DOI: 10.1109/tac.2013.2261175
Google Scholar
[10]
C. Zeng, S. Liang, Y. Sun, Y. Su, Discrete dynamics analysis for nonlinear collocated multivariable mass-damper-spring intelligent mechanical vibration systems. Journal of Vibroengineering, 16(2): 765-776, (2014).
Google Scholar
[11]
S. Hara, Properties of zeros in digital control systems with computational time delay. International Journal of Control, 49(2): 493-511, (1989).
DOI: 10.1080/00207178908559649
Google Scholar
[12]
M. Ishitobi, Stable zeros of a discrete system obtained by sampling a continuous-time plant with a time delay. International Journal of Control, 59(4): 1053-1062, (1994).
DOI: 10.1080/00207179408923117
Google Scholar
[13]
S. Liang and M. Ishitobi, The stability properties of the zeros of sampled models for time delay systems in fractional order hold case. Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications and Algorithms, 11(3): 299-312, (2004).
Google Scholar
[14]
A. Isidori, Nonlinear control systems: an introduction, Springer Verlag, (1995).
Google Scholar
[15]
H. K. Khalil, Nonlinear systems. Prentice Hall Upper Saddle River, (2002).
Google Scholar
[16]
M. Ishitobi, Zero dynamics of sampled-data models for nonlinear systems. American Control Conference, 1184-1189, (2008).
DOI: 10.1109/acc.2008.4586653
Google Scholar