[1]
H. Karbasian, A.E. Tekkaya, A review on hot stamping,Journal of Materials Processing Technology 210 (2010) 2103–2118.
DOI: 10.1016/j.jmatprotec.2010.07.019
Google Scholar
[2]
Li Guang-Ying, Tang Di & Wang Xian-Jin, Development of Deep Working Technology of Sheet Steels for Automobiles, Steel Rolling, 30(2013),1, 1-8.
Google Scholar
[3]
Shi-Wei Wang and Ping-Kun Lee, Investigation of Die Quench Properties of Hot Stamping Steel 15B22 China Steel Technical Report, (2013), 26, 22-31.
Google Scholar
[4]
J G. Speer, D K. Matlock, B C. Coornan, J G. Schroch. Carbon partitioning into austenite after martensite transformation, Acta Mater., 51(2003): 2611-2622.
DOI: 10.1016/s1359-6454(03)00059-4
Google Scholar
[5]
J.G. Speer, F.C. Rizzo Assunçã, D.K. Matlock, D.V. Edmonds, The Quenching and Partitioning Process: Background and Recent Progress, Materials Research, 8 (2005), 4, 417-423.
DOI: 10.1590/s1516-14392005000400010
Google Scholar
[6]
D.K. Matlock, V.E. Bräutigam, J.G. Speer, Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel . In Proceedings of THERMEC 2003, Uetikon-Zurich, Switzerland: Trans. Tech. Publications, Inc.; Mater. Sci. Forum., 426-432 (2003).
DOI: 10.4028/www.scientific.net/msf.426-432.1089
Google Scholar
[7]
D.K. Matlock, Microstructural Aspects of Advanced High Strength Sheet Steels , Advanced High Strength Steel Workshop , Arlington, Virginia, USA , Oct. 22-23, (2006).
Google Scholar
[8]
Z Y. Xu, New processes for steel heat treatment, Heat Treatment, 22 (2007), 1: 1-11.
Google Scholar
[9]
T.Y. Hsu (Xu Zuyao), Quenching-Partitioning-Tempering (Precipitation) (Q-P-T) Process for Ultra-high Strength Steel Heat Treatment, 23 (2008), 2: 1-5.
DOI: 10.1179/174951508x358400
Google Scholar
[10]
T.Y. Hsu (XU Zu-yao) A brief introduction to quenching-partitioning–tempering (Q-P-T) process, Heat Treatment of Metals, 134 (2009), 16: 1-8.
Google Scholar
[11]
Zhong N, Wang X. D, Rong Y. H, Wang L., Enhancement of the mechanical properties of a Nb-micro-alloyed advanced high strength steel treated by quenching -partitioning -tempering process [ J ]. Mater. Sci. Eng , 506A(2009), 111-116.
DOI: 10.1016/j.msea.2008.11.014
Google Scholar
[12]
Rong Yonghua, Advanced Q-P-T Steels with Ultrahigh Strength-High Ductility Acta Metallurgica Sinica, 47(2011), 12: 1483-1489.
Google Scholar
[13]
Zhang Ke, Xu Weizong, Guo Zhenghong, Rong Yonghuα, Effects of Novel Q-P-T and Traditional Q-T Process on the Microstructure and Mechanical Properties of Martensitic Steels with Different Carbon Content Acta Metallurgica Sinica, 47(2011).
Google Scholar
[14]
V. F. Zackay, E. R. Parker, D. Fahr, and R. Busch 1967 The Enhancement of Ductility in High-Strength Steels , ASM Trans. Quart. 60 (1967), 252-259.
Google Scholar
[15]
O. Matsumura, Y. Sakuma and H. Takechi, TRIP and its Kinetic Aspects in Austempered 0. 4C-1. 5Si-0. 8Mn Steel , Scripta Met. 21 (1987), 1301.
DOI: 10.1016/0036-9748(87)90103-7
Google Scholar
[16]
O. Matsumura, Y. Sakuma, and H. Takechi, Enhancement of Elongation by Retained Austenite in Intercritical Annealed 0. 4C-1. 5Si-0. 8Mn Steel , Transaction ISIJ 27 (1987), 570.
DOI: 10.2355/isijinternational1966.27.570
Google Scholar
[17]
Y. Sakuma, O. Matsumura, and O. Akisue, Influence of Annealing Temperature on Microstructure and Mechanical Properties of 400℃ Transformed Steel Containing Retained Austenite ISIJ International 31(1991), 11: 1348-1353.
DOI: 10.2355/isijinternational.31.1348
Google Scholar
[18]
K. Sugimoto, N. Ususi, M. Kobayashi, and S. Hashimoto , Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels , ISIJ International, 32 (1992), 1311.
DOI: 10.2355/isijinternational.32.1311
Google Scholar
[19]
W.C. Jeong, D. K. Matlock, and G. Krauss, Observation of Deformation and Transformation Behavior of Retained Austenite in a 0. 14C-1. 2Si-1. 5Mn Steel with Ferrite-Bainite-Austenite Structure , Mat. Sci. and Eng. A165 (1993) , 1-5.
DOI: 10.1016/0921-5093(93)90620-t
Google Scholar
[20]
Koh-ichi Sugimoto, Masahiro Misu, Mitsuyuki Kobayashi, Hidenori Shirasawa, Effects of Second Phase Morphology on Retained Austenite Morphology and Tensile Properties in a TRIP-aided Dual-phase Steel Sheet ISIJ International, 33 (1993).
DOI: 10.2355/isijinternational.33.775
Google Scholar
[21]
T. Akbay and C. Atkinson, The Influence of Diffusion of Carbon in Ferrite as Well as in Austenite on a Model of Reaustenitization from Ferrite/Cementite Mixtures in Fe-C Steels, J. of Mat. Sci., 31 (1996) , 2221-2225.
DOI: 10.1007/bf01152931
Google Scholar
[22]
P. Jacques, X. Cornet, Ph. Harlet, J. Ladriere and F. Delannay, Enhancement of the Mechanical Properties of a Low-Carbon Low-Silicon Steel by Formation of a Multiphased Microstructure Containing Retained Austenite Met. & Mat. Trans. A, 29A(1998).
DOI: 10.1007/s11661-998-0114-1
Google Scholar
[23]
P. Jacques, E. Girault, T. Catlin, N. Geerlofs etc, Bainite transformation of low carbon Mn–Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention Materials Science and Engineering A273–275 (1999).
DOI: 10.1016/s0921-5093(99)00331-7
Google Scholar
[24]
A. Pichler, S. Traint, H. Pauli etc, Processing and Properties of Cold-Rolled TRIP Steels , 43rd MWSP Conf. Proc., ISS, 39( 2001), 411-434.
Google Scholar
[25]
Takehide Senuma 2001 Physical Metallurgy of Modern High Strength Steel Sheets ISIJ International, 41 (2001), 520–532.
DOI: 10.2355/isijinternational.41.520
Google Scholar
[26]
Jan Mahieu, Jun Maki, Serge Claessens, Bruno C. De Cooman, Hot Dip Galvanizing of Al Alloyed TRIP Steel 43rd MWSP Conf. Proc., ISS, 34(2001), 397-407.
Google Scholar
[27]
S. Traint, A. Pichler, P. Stiaszny, K. Spiradek-Hahn, E.A. Werner, Mechanical Properties and Phase Transformations of an Aluminium Alloyed TRIP Steel , 43rd Mechanical Working and Steel Processing Conference Proceedings, ISS, Warrendale, 34(2001).
DOI: 10.1002/srin.200200206
Google Scholar
[28]
J. Mahieu, J. Maki, B.C.D. Cooman , Phase transformation and mechanical properties of Si-free CMnAl transformation induced plasticity-aided steel , Metall Trans., 33A( 2002) 2573 - 2580.
DOI: 10.1007/s11661-002-0378-9
Google Scholar
[29]
Benda Yan & Dennis Urban, Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications AISI/DOE Technology Roadmap Program, Final Report, April 2003, Pittsburgh, PA 15222.
DOI: 10.2172/812199
Google Scholar
[30]
Koh-ichi Sugimoto, Michitaka Tsnezawa, Tomohiko Hojo and Shushi Ikeda, Ductility of 0. 1–0. 6C–1. 5Si– 1. 5Mn Ultra High-Strength TRIP-aided Sheet Steels with Bainitic Ferrite Matrix ISIJ International, 44 (2004) 1608–1614.
DOI: 10.2355/isijinternational.44.1608
Google Scholar
[31]
B.C. De Cooman, Structure–properties relationship in TRIP steels containing carbide-free bainite Solid State and Materials Science, 8 (2004) 285–303.
DOI: 10.1016/j.cossms.2004.10.002
Google Scholar
[32]
Sandra Traint, Andreas Pichler, Robert Sierlinger, Heinrich Pauli, Ewald A Werner 2006 Low-alloyed TRIP-Steels with Optimized Strength, Forming and Welding Properties Steel Research int. 77(2006) 641-649.
DOI: 10.1002/srin.200606442
Google Scholar
[33]
A. Kammouni, W. Saikaly, M. Dumont, C. Marteaud, X. Banod, A. Chara , Effect of the bainitic transformation temperature on retained austenite fraction and stability in Ti microalloyed TRIP steels Materials Science and Engineering, A 518 (2009).
DOI: 10.1016/j.msea.2009.05.015
Google Scholar
[34]
T.Y. Hsu (Xu Zuyao), X.J. Jin, Y.H. Rong, Strengthening and toughening mechanisms of quenching– partitioning– tempering (Q–P–T) steels Journal of Alloys and Compounds , 577S (2013) S568–S571.
DOI: 10.1016/j.jallcom.2012.02.016
Google Scholar
[35]
Ning Zhong, Xiaodong Wang, Yonghua Rong, and Li Wang, Interface Migration between Martensite and Austenite during Quenching and Partitioning (Q&P) Process, J. Mater. Sci. Technol., 22 (2006), 51-754.
Google Scholar
[36]
M.J. Santofimiaa, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov, J. Sietsma, New low carbon Q&P steels containing film-like intercritical ferrite, Materials Science and Engineering A 527 (2010) 6429–6439.
DOI: 10.1016/j.msea.2010.06.083
Google Scholar
[37]
D. Hauserová, M. Duchek, J. Dlouhý, Z. Nový , Properties of Advanced Experimental CMnSiMo Steel Achieved by QP Process Procedia Engineering 10 (2011) 2961–2966.
DOI: 10.1016/j.proeng.2011.04.491
Google Scholar
[38]
Yuan Peng-ju, Zhou Shu, Liu Chun-wei, Wang Ying, Wu Yu-li, Rong Yong-hua, Quenching- Partitioning Process and Its Engineering Feasibility of 900 MPa Grade Hot-Rolled Plate, Iron & Steel, 47 ( 2012), 3: 70-75.
Google Scholar
[39]
Wang Ying, Zhang Ke, Guo Zheng-hong etc. A New Effect of Retained Austenite on Ductility Enhancement of Low Carbon Q-P-T Steel, Acta Metallurgica Sinica, 48(2012) 641-648.
DOI: 10.3724/sp.j.1037.2012.00042
Google Scholar
[40]
Zhou Shu, Zhang Ke, Gu Jian-feng, Rong Yong-hua, Low temperature microstructure and mechanical properties of a low carbon alloy steel by quenching- partitioning- tempering process Transactions of Materials & Heat Treatment, 33 (2012), 6: 30-34.
Google Scholar
[41]
Ying Wang, Zhenghong Guo, Nailu Chen, Yonghua Rong, Deformation Temperature Dependence of Mechanical Properties and Microstructures for a Novel Quenching-Partitioning-Tempering Steel J. Mater. Sci. Technol., 29(2013)451-457.
DOI: 10.1016/j.jmst.2013.01.003
Google Scholar
[42]
Chen Yin-li, Kuai Zhen, Zhao Ai-min, Zhuang Bao-tong, Effect of two- phase region annealing temperature and partitioning temperature on microstructure and properties of a low carbon Si-Mn Q-P steel Transactions of Materials and Heat Treatment, 34(2013).
Google Scholar
[43]
Jun Zhang, Hua Ding, Chao Wang, Jing-wei Zhao, Ting Ding, 2013 Work hardening behaviors of a low carbon Nb- microalloyed Si–Mn quenching–partitioning steel with different cooling styles after partitioning, Materials Science & Engineering A585 (2013).
DOI: 10.1016/j.msea.2013.07.046
Google Scholar
[44]
Li Na, Liu Guo-quan, Kang Ren-mu etc. Processing design and microstructure and mechanical properties of a new type of Q- P- T steel Transactions of Materials & Heat Treatment, 34(2013), 118-124.
Google Scholar
[45]
N. Maheswari, S. Ghosh, Chowdhury, K.C. Hari, Kumar, S. Sankaran, Influence of alloying elements on the microstructure evolution and mechanical properties in quenched and partitioned steels Materials Science & Engineering A600 (2014) 12–20.
DOI: 10.1016/j.msea.2014.01.066
Google Scholar
[46]
Chao Wang, Hua Ding, Minghui Cai, Bernard Rolf, Characterization of microstructures and tensile properties of TRIP-aided steels with different matrix microstructure Materials Science & Engineering A 610 (2014) 65–75.
DOI: 10.1016/j.msea.2014.05.029
Google Scholar
[47]
Zhun-li Tan, Kai-kai Wang, Guhui Gan, Xiaolu Gui, Mechanical Properties of Steels Treated by Q-P-T Process Incorporating Carbide free Bainite/Martensite Multiphase Microstructure Journal of Iron and Steel Research, International, 21(2014).
DOI: 10.1016/s1006-706x(14)60029-7
Google Scholar
[48]
Chao Wang, Hua Ding, Minghui Cai, Bernard Rolf, Multi-phase microstructure design of a novel high strength TRIP steel through experimental methodology Materials Science & Engineering A 610 (2014) 436–444.
DOI: 10.1016/j.msea.2014.05.063
Google Scholar