Breeding Forage Crop Meets the Needs of a Sustainable Agriculture

Article Preview

Abstract:

Sustainable agricultural systems tend to have a positive effect on natural, social and human capital, while unsustainable ones feedback to deplete these assets, leaving fewer for future generations. Forage crop are critical to sustainable agriculture and contribute extensively to the world economy. Tremendous progress has been made in genetic transformation of forage and turf grasses in the past decade. The rapida dvancement of cellular and molecular biology and transgenic technology provides novel methods to accelerate and complement conventional breeding efforts. This review summarizes the latest advances of breeding forage crop and introduces the development of sustainable agriculture as well as perspectives the important role of breeding forage crop in development of sustainable agriculture in the future.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1073-1076)

Pages:

1104-1107

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Malézieux, Y. Crozat, C. Dupraz, M. Laurans, D. Makowski, H. Ozier-Lafontaine, B. Rapidel, S.D. Tourdonnet, M. Valantin-Morison. Agron Sustain Dev., 29: 43–62. (2009).

DOI: 10.1051/agro:2007057

Google Scholar

[2] J.M. Rodriguez, J.J. Molnar, R.A. Fazio, E. Sydnor, M.J. Lowe. Renew Agr Food Syst., 24: 60–71. (2009).

Google Scholar

[3] J. Zhang, W. Sun, Z. Li, Y. Liang, A. Song. Agron Sustain Dev., 29: 483–490. (2009).

Google Scholar

[4] C.W. Stuber, J. Hancock. Crop Sci., 48: 25–29. (2008).

Google Scholar

[5] P. P. Jauhar. Berlin: Springer. (1993).

Google Scholar

[6] Y. Z. Wang, Y.X. Ge. In Vitro Cell. Dev. Biol. 42: 1–18. (2006).

Google Scholar

[7] G. Spangenberg,; Z.Y. Wang. I. Potrykus. Berlin: Springer. (1998).

Google Scholar

[8] L. Skot, N.R. Sackville Hamilton, S. Mizen, K.H. Chorlton ,I.D. Thomas. Mol Ecol., 11: 1865–1876. (2002).

DOI: 10.1046/j.1365-294x.2002.01568.x

Google Scholar

[9] B.E. Ubi, R. K¨olliker, M. Fujimori ,T. Komatsu, Crop Sci , 43: 1516–1522. (2003).

Google Scholar

[10] T.J. Gilliland, R. Coll, E. Calsyn, M. De Loose, M.J.T. van Eijk, I. Rold´an-Ruiz. Mol Breed , 6: 569–580. (2000).

DOI: 10.1023/a:1011361731545

Google Scholar

[11] Rold´an-Ruiz, E. Calsyn, T.J. Gilliland, R. Coll, M.J.T. van Eijk, M. De Loose. Mol Breed, 6: 593–602. (2000).

DOI: 10.1023/a:1011398124933

Google Scholar

[12] A. Parsons, D. Chapman. Oxford, UK: Blackwell Science, 31–88. (2000).

Google Scholar

[13] Z.Y. Wang, Y. Ge. Funct. Plant Biol., 32: 769–776. (2005).

Google Scholar

[14] Z.Y. Wang, A. Hopkins, R. Mian, Crit. Rev. Plant Sci., 20: 573–619. (2001).

Google Scholar

[15] T. Lubberstedt. Wageningen: Wageningen Academic Publishers: 19–30. (2005).

Google Scholar

[16] K. Hammer. Gen. Res. Crop Evol., 50: 3–10. (2003).

Google Scholar

[17] B. Brown, M. Hanson, D. Liverman,R. Merideth. Enviromental Management , 11 (6): 713-719. (1987).

Google Scholar

[18] J. Pretty. UK: Earthscan. 261. London. (2002).

Google Scholar

[19] J. Pretty, UK: Earthscan. 405. London. (2005).

Google Scholar

[20] J.M. Meynard, F. Aggerri, J.B. Coulon, R. Habib, J.P. Tillon . Rapport du groupe de travail, septembre , 72 p. (2006).

Google Scholar

[21] FAO . Stockholm 1972-Rio 1992. Rome, Italy. (1992).

Google Scholar

[22] R. Weterings, J. Opschoor. Rijswijk, The Netherlands. (1994).

Google Scholar