Preparation and Characterization of H3PW12O40/TiO2-M (M=Fe, Co, Ni, Zn) and Photocatalytic Activity for Methyl Orange Decomposition

Article Preview

Abstract:

Composites H3PW12O40/TiO2-M (M=Fe, Co, Ni, Zn) were synthesized by combining sol-gel technology with impregnation method. The structures and properties were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and UV-Vis diffuser reflectance spectrum (UV-Vis DRS). The XRD and FT-IR results showed that the TiO2 particles had the anatase phase, and the Keggin structure of H3PW12O40 remained intact. The UV-Vis DRS results indicated that compared with pure TiO2, an obvious red shift occurred after introducing H3PW12O40. The composites were used as heterogeneous photocatalyst to the degradation of methyl orange, and the influences of catalyst dosage, H3PW12O40 loading and metal ion species were studied. Results show that, under the optimum parameters pH value 2.00, 0.4 g·L-1 catalyst dosage and 30% H3PW12O40 loading, 96.6% methyl orange was degraded after 30 min irradiation (365 nm) using composite H3PW12O40/TiO2-Zn. The photodegradation process fitted Langmuir-Hinshelwood first order kinetics.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1073-1076)

Pages:

202-209

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Zhuang, Y. Wan, C.M. Feng, et al. Chem Mater, Vol. 21(2009), p.706.

Google Scholar

[2] C.G. Feng, Y.Z. Li, X. Liu. Chin. J Chem, Vol. 30(2012), p.127.

Google Scholar

[3] M. Kornaros, G. Lyberatos. J Hazard Mater, Vol. 136(2006), p.95.

Google Scholar

[4] K. X. Li, Y.N. Guo, F.Y. Ma, et al. Catal Commun, Vol. 11(2010), p.839.

Google Scholar

[5] Y.Z. LI., X. LIU, C.G. FENG. Chemistry Bulletin, Vol. 73(2010), p.579.

Google Scholar

[6] C.G. Feng, X.X. Zhuo, X. Liu. J Rare Earth, Vol. 27(2009), p.717.

Google Scholar

[7] N. Hoffman, T. Martin, et al. Chem Rev, Vol. 95(1995), p.69.

Google Scholar

[8] P. Kormali, D. Dimoticali, D. Tsipi, et al. Appl Catal B: Environmental, Vol. 48(2004), p.175.

Google Scholar

[9] Y. T. Xu, L. Li, X.D. Yu, et al. Chem J Chinese U, Vol. 25(2004), p.1549.

Google Scholar

[10] C.G. Feng, H.R. Shang. Chem Res Chinese U, Vol. 28(2012), p.366.

Google Scholar

[11] Y.H. Xiong, F.Y. Li. Acta Phys. - Chim. Sin., Vol. 21(2005), p.607.

Google Scholar

[12] S. Liu, Y. Chen. Catal Commun, Vol. 10(2009), p.894.

Google Scholar

[13] H.X. Jin, Q.Y. Wu, W.Q. Pang. J Hazard Mater, Vol. 141(2007), p.123.

Google Scholar

[14] X. Liu, Y.Z. Li, C.G. Feng. Spectrosc Spect Anal, Vol. 32(2012), p.1020 (In Chinese).

Google Scholar

[15] Y.J. Wang, K.C. Lu, C.G. Feng. J Rare Earth, Vol. 29(2011), p.866.

Google Scholar

[16] L. Li, Q.Y. Wu, Y.H. Guo, C.W. Hu. Microporous Mesoporous Mater, Vol. 87(2005), p.1.

Google Scholar

[17] N. Lu, Y.H. Zhao, H.B. Liu, et al. J Hazard Mater, Vol. 199-200(2012), p.1.

Google Scholar

[18] C.G. Feng, H.R. Shang, X. Liu. Chin J Catal, Vol. 35(2014), p.168.

Google Scholar

[19] Q.Y. Wu , X.G. Sang, B. Liu, et al. Mater Lett, Vol. 59(2005), p.123.

Google Scholar

[20] R.R. Ozer, J.L. Ferry. Environ Sci Technol, Vol. 35(2001), p.3242.

Google Scholar

[21] C.G. Feng, G. Xu, X. Liu. J Rare Earth, Vol. 31(2013), p.44.

Google Scholar

[22] M. Yoon, J.A. Chang, Y. Kim, et al. J Phys Chem B, Vol. 5(2001), p.2539.

Google Scholar

[23] M.M. Yoshida, C.V. Martinez, A.P. Madrid. Thin Solid Films, Vol. 419(2002), p.60.

Google Scholar

[24] X. Liu, H.R. Shang, C.G. Feng. J Rare Earth, Vol. 32(2014), p.17.

Google Scholar