Precipitation Behaviour of Chromium in CaO-MgO-SiO2-Al2O3-Cr2O3-Fe2O3 Slag System

Article Preview

Abstract:

Different cooling process, annealing temperature and addition of B2O3 were experimented on the CaO-MgO-SiO2-Al2O3-Cr2O3-Fe2O3 slag system with an aim to investigate the chromium precipitation behaviour. The solidified slags were characterized by XRD, SEM, EDX and EPMA. It was shown that, under melt-quenching process, chromium was immobilized in amorphous structure in the slag with basicity lower than 1.0 and Cr2O3 content less than 4.0 wt%. It was also found that addition of B2O3 and higher annealing temperature would be helpful for the precipitation of chromium into spinel solid solution in slag with basicity of 1.5.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1073-1076)

Pages:

21-27

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.W. Zhang, X. Hong: Resources, Conservation and Recycling Vol. 55 (2011), p.745.

Google Scholar

[2] K. Pillay, H. von Blottnitz, J. Petersen: Chemosphere Vol. 52 (2003), p.1771.

Google Scholar

[3] Y. M. Lee and C. L. Nassaralla: Materials Science and Engineeing A Vol. 437 (20062), p.334.

Google Scholar

[4] M. Görnerup, A.K. Lahiri: Ironmaking and Steelmaking Vol. 25 (1998), p.382.

Google Scholar

[5] B. Adamczyk, R. Brenneis, C. Adam and D. Mudersbach: Steel Research International Vol. 81 (2010), p.1078.

Google Scholar

[6] E. Garcı´a-Ramos, A. Romero-Serrano, B. Zeifert, P. Flores-Sanchez, M. Hallen-Lapez, and E.G. Palacios: Steel Research International Vol. 79 (2008), p.332.

DOI: 10.1002/srin.200806135

Google Scholar

[7] V. Arredondo-Torres, A. Romero-Serrano, B. Zeifert, J. Cruz-Rivera, P. Flores-Sánchez and A. Cruz-Ramírez: Revista de metalurgia Vol. 42 (2006), p.417.

Google Scholar

[8] G. LaforestT, J. Duchesne: Cement and Concrete Research Vol. 35 (2005), p.2322.

Google Scholar

[9] G. J. Albertsson, L.D. Teng, F. Engström and S. Seetharaman: Metallurgical and Materials Transactions B Vol. 44(2013), p.1586.

Google Scholar

[10] F. Engström, D. Adolfsson, Q. Yang, C. Samuelsson and B. Björkman: Steel Research International Vol. 81 (2010), p.362.

Google Scholar

[11] S., Yoshihiro, Y. Yukihiko; T. Masamitsu, I. Atsushi, S. Etsuro and N. Takashi: Industrial & Engineering Chemistry Research Vol. 52 (2013), p.3903.

Google Scholar

[12] H. Cabrera-Real, A. Romero-Serrano, B. Zeifert, A. Hernandez-Ramirez, M. Hallen-Lopez and A. Cruz-Ramirez: J Mater Cycles Waste Manag. Vol. 14 (2012), p.317.

DOI: 10.1007/s10163-012-0072-y

Google Scholar

[13] J. L. Li, A. J. Xu, D. F. He, Q. X. Yang and N. Y. Tian: International Journal of Minerals, Metallurgy and Materials Vol. 20 (2013), p.253.

Google Scholar

[14] D. Durinck, S. Arnout, G. Mertens, E. Boydens, P. Tom Jones, J. Elsen, B. Blanpain and P. Wollants: Journal of the American Ceramic Society Vol. 91 (2008), p.548.

DOI: 10.1111/j.1551-2916.2007.02147.x

Google Scholar

[15] Y. Pontikes, P. T. Jones, D. Geysen and B. Blanpain: Archives of Metallurgy and Materials Vol. 55 (2010), p.1167.

Google Scholar

[16] L. V. Morozova and V. P. Popov: Glass Physics and Chemistry Vol. 36 (2010), p.86.

Google Scholar

[17] H. T. Shen, E. Forssberg and U. Nordström: Resources, Conservation and Recycling, Vol. 40 (2004), p.245.

Google Scholar