Hydrothermal Conversion of CO2 into Formic Acid with Zinc and Copper Powders under Low Temperature

Article Preview

Abstract:

Possible catalytic activity of different metals in hydrothermal reduction of CO2 into formic acid with Zn was investigated under low temperatures. Among the several catalysts (Cu, Fe and Sn) were used, Cu shows the best catalytic activity for the formic acid production. The formic acid yield is as high as 61% under hydrothermal condition. XRD analysis was also carried out to investigate the possible role of reactants.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1073-1076)

Pages:

39-42

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Z. Jacobson: Energ. Environ. Sci. Vol. 2 (2009), p.148.

Google Scholar

[2] P. N. Pearson and M. R. Palmer: Nature. Vol. 406 (2000), p.695.

Google Scholar

[3] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor and H. L. Miller, SD Solomon (Ed. ): IPCC. Vol. 10 (2007), p.749.

Google Scholar

[4] A. Urakawa, F. Jutz, G. Laurenczy and A. Baiker: Chem. Eur. J. Vol. 13 (2007), p.3886.

Google Scholar

[5] B. Chan and L. Radom: J. Am. Chem. Soc. Vol. 128 (2006), p.5322.

Google Scholar

[6] W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, A. Steinfeld: Science. Vol. 330 (2010), p.1797.

DOI: 10.1126/science.1197834

Google Scholar

[7] F. Jin, X. Zeng, J. Liu, Y. Jin, L. Wang, H. Zhong, G. Yao and Z. Huo: Sci. Rep. Vol. 4 (2014), p.1.

Google Scholar

[8] S. Fukuzumi: Eur. J. Inorg. Chem. Vol. 2008 (2008), p.1351.

Google Scholar

[9] P. Usubharatana, D. McMartin, A. Veawab and P. Tontiwachwuthikul: Ind. Eng. Chem. Res. Vol. 45 (2006), p.2558.

DOI: 10.1021/ie0505763

Google Scholar

[10] Z. Huo, M. Hu, X. Zeng, J. Yun and F. Jin: Catal. Today. Vol. 194 (2012), p.25.

Google Scholar

[11] N. Akiya and P. E. Savage: Chem. Rev. Vol. 102 (2002), p.2725.

Google Scholar

[12] F. Jin, Y. Gao, Y. Jin, Y. Zhang, J. Cao, Z. Wei and R. L. Smith Jr: Energ. Environ. Sci. Vol. 4 (2011), p.881.

Google Scholar

[13] A. Steinfeld: Solar Energy. Vol. 78 (2005), p.603.

Google Scholar

[14] C. Rice, S. Ha, R. Masel, P. Waszczuk, A. Wieckowski and T. Barnard: J Power Sources. Vol. 111 (2002), p.83.

DOI: 10.1016/s0378-7753(02)00271-9

Google Scholar

[15] J. Yu and P. E. Savage: Ind. Eng. Chem. Res. Vol. 37 (1998), p.2.

Google Scholar

[16] M. Weber, J. T. Wang, S. Wasmus and R. Savinell: J. Electrochemical Society. Vol. 143 (1996), p.158.

Google Scholar