[1]
Y. Zhou, L. Schideman, G. Yu and Y. Zhang, A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling, Energy Environ. Sci. 6 (2013) 3765-3779.
DOI: 10.1039/c3ee24241b
Google Scholar
[2]
P. Biller, A. B. Ross, S. C. Skill, A. Lea-Langton, B. Balasundaram, C. Hall, R. Riley and C. A. Llewellyn, Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process, Algal Res. 1 (2012) 70-76.
DOI: 10.1016/j.algal.2012.02.002
Google Scholar
[3]
U. Jena, N. Vaidyanathan, S. Chinnasamy and K. C. Das, Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass, Bioresour. Technol. 102 (2011) 3380-3387.
DOI: 10.1016/j.biortech.2010.09.111
Google Scholar
[4]
L. Garcia Alba, C. Torri, D. Fabbri, S. R. A. Kersten and D. W. F. Wim Brilman, Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae, Chem. Eng. J. 228 (2013) 214-223.
DOI: 10.1016/j.cej.2013.04.097
Google Scholar
[5]
Y. Zhou, L. Schideman, Y. Zhang, G. Yu, Z. Wang and M. Pham, Resolving Bottlenecks in Current Algal Wastewater Treatment Paradigms: A Synergistic Combination of Low-Lipid Algal Wastewater Treatment and Hydrothermal Liquefaction for Large-Scale Biofuel Production, Energy and Water. 15 (2011).
DOI: 10.2175/193864711802837084
Google Scholar
[6]
P. Wu, G. Zhang, J. Li, H. Lu and W. Zhao, Effects of Fe2+ concentration on biomass accumulation and energy metabolism in photosynthetic bacteria wastewater treatment, Bioresour. Technol. 119 (2012), 55-59.
DOI: 10.1016/j.biortech.2012.05.133
Google Scholar
[7]
F. Kuo, Y. Chien and C. Chen, Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris, Bioresour. Technol. 113 (2012) 315-318.
DOI: 10.1016/j.biortech.2012.01.087
Google Scholar
[8]
E. Eroglu, U. Gunduz, M. Yucel and I. Eroglu, Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock, Int. J. Hydrogen Energy. 35 (2010) 5293-5300.
DOI: 10.1016/j.ijhydene.2010.03.063
Google Scholar
[9]
W. Choorit, P. Thanakoset, J. Thongpradistha, K. Sasaki and N. Noparatnaraporn, Identification and cultivation of photosynthetic bacteria in wastewater from a concentrated latex processing factory, Biotechnol. Lett. 24 (2002) 1055-1058.
DOI: 10.1023/a:1016026412361
Google Scholar
[10]
H. Lu, G. Zhang, X. Dai and C. He, Photosynthetic bacteria treatment of synthetic soybean wastewater: Direct degradation of macromolecules, Bioresour. Technol. 101 (2010) 7672-7674.
DOI: 10.1016/j.biortech.2010.04.074
Google Scholar
[11]
H. Li, Z. Liu, Y. Zhang, B. Li, H. Lu, N. Duan, M. Liu, Z. Zhu and B. Si, Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction, Bioresour. Technol. 154 (2014) 322-329.
DOI: 10.1016/j.biortech.2013.12.074
Google Scholar
[12]
A. P. H. Association, A. W. W. Association and W. E. Federation, Standard Methods for the Examination of Water and Wastewater, 21th ed., American Public Health Association, Washington, (2005).
Google Scholar
[13]
Q. Zhou, P. Zhang and G. Zhang, Enhancement of cell production in photosynthetic bacteria wastewater treatment by low-strength ultrasound, Bioresour. Technol. 161 (2014) 451-454.
DOI: 10.1016/j.biortech.2014.03.106
Google Scholar
[14]
H. Liu, M. Li and R. Sun, Hydrothermal liquefaction of cornstalk: 7-Lump distribution and characterization of products, Bioresour. Technol. 128 (2013) 58-64.
DOI: 10.1016/j.biortech.2012.09.125
Google Scholar
[15]
H. Nagadomi, T. Kitamura, M. Watanabe and K. Sasaki, Simultaneous removal of chemical oxygen demand (COD), phosphate, nitrate and H2S in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria, Biotechnol. Lett. 22 (2000).
Google Scholar
[16]
X. Shi and H. Yu, Response surface analysis on the effect of cell concentration and light intensity on hydrogen production by Rhodopseudomonas capsulata, Process Biochem. 40 (2005) 2475-2481.
DOI: 10.1016/j.procbio.2004.09.010
Google Scholar
[17]
Q. Zhou, P. Zhang and G. Zhang, Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: effects of light intensity, Bioresour. Technol. 171 (2014) 330-335.
DOI: 10.1016/j.biortech.2014.08.088
Google Scholar