[1]
Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Nano-photocatalytic materials: possibilities and challenges. Adv Mater 2012; 24: 229-51.
DOI: 10.1002/adma.201102752
Google Scholar
[2]
Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2012; 13: 169-89.
DOI: 10.1016/j.jphotochemrev.2012.06.001
Google Scholar
[3]
Ohko Y, Ando I, Niwa C, Tatsuma T, Yamamura T, Nakashima T, et al. Degradation of bisphenol A in water by TiO2 photocatalyst. Environmental science & technology 2001; 35: 2365-8.
DOI: 10.1021/es001757t
Google Scholar
[4]
Nagaveni K, Sivalingam G, Hegde M, Madras G. Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environmental science & technology 2004; 38: 1600-4.
DOI: 10.1021/es034696i
Google Scholar
[5]
Bianco Prevot A, Baiocchi C, Brussino MC, Pramauro E, Savarino P, Augugliaro V, et al. Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions. Environmental science & technology 2001; 35: 971-6.
DOI: 10.1021/es000162v
Google Scholar
[6]
Mirkhani V, Tangestaninejad S, Moghadam M, Habibi M, Rostami-Vartooni A. Photocatalytic degradation of azo dyes catalyzed by Ag doped TiO2 photocatalyst. Journal of the Iranian Chemical Society 2009; 6: 578-87.
DOI: 10.1007/bf03246537
Google Scholar
[7]
Fu Y, Xiong P, Chen H, Sun X, Wang X. High photocatalytic activity of magnetically separable manganese ferrite–graphene heteroarchitectures. Industrial & Engineering Chemistry Research 2012; 51: 725-31.
DOI: 10.1021/ie2026212
Google Scholar
[8]
Guo P, Zhang G, Yu J, Li H, Zhao X. Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012; 395: 168-74.
DOI: 10.1016/j.colsurfa.2011.12.027
Google Scholar
[9]
Fu W, Yang H, Liu B, Zou G. Preparation and photocatalytic property of anatase TiO_2/MnFe_2O_4 core-shell structure nanoparticles [J]. Acta Materiae Compositae Sinica 2007; 3: 025.
Google Scholar
[10]
Jin Q, Fujishima M, Tada H. Visible-Light-Active Iron Oxide-Modified Anatase Titanium(IV) Dioxide. The Journal of Physical Chemistry C 2011; 115: 6478-83.
DOI: 10.1021/jp201131t
Google Scholar
[11]
Ohno T, Mitsui T, Matsumura M. Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light. Chemistry Letters 2003; 32: 364-5.
DOI: 10.1246/cl.2003.364
Google Scholar
[12]
Jin Q, Ikeda T, Fujishima M, Tada H. Nickel(II) oxide surface-modified titanium(IV) dioxide as a visible-light-active photocatalyst. Chem Commun (Camb) 2011; 47: 8814-6.
DOI: 10.1039/c1cc13096j
Google Scholar
[13]
Muramatsu Y, Jin Q, Fujishima M, Tada H. Visible-light-activation of TiO2 nanotube array by the molecular iron oxide surface modification. Applied Catalysis B: Environmental 2012; 119-120: 74-80.
DOI: 10.1016/j.apcatb.2012.02.012
Google Scholar
[14]
Nedoloujko A, Kiwi J. TiO2 speciation precluding mineralization of 4-tert-butylpyridine. Accelerated mineralization via Fenton photo-assisted reaction. Water Research 2000; 34: 3277-84.
DOI: 10.1016/s0043-1354(00)00055-5
Google Scholar
[15]
Bauer R, Fallmann H. The photo-Fenton oxidation—a cheap and efficient wastewater treatment method. Research on chemical intermediates 1997; 23: 341-54.
DOI: 10.1163/156856797x00565
Google Scholar
[16]
Ren P, Zhang J, Deng H. Preparation and microstructure of spinel zinc ferrite ZnFe2O4 by Co-precipitation method. Journal of Wuhan University of Technology-Mater Sci Ed 2009; 24: 927-30.
DOI: 10.1007/s11595-009-6927-y
Google Scholar