Highly Active S-Doping MnFe2O4 by Synthesis and Photo-Fenton Catalytic Property Research

Article Preview

Abstract:

Composite oxide MnFe2O4 have been synthesized via the hydrothermal process and then modified by S=O. These compounds were characterized by X-ray diffusions, and ultraviolet-visible diffusion reflectance spectroscopy. MnFe2O4 exhibits stronger photocatalytic activity, with 95.5% degradation ratio of methyl orange and 91% degradation ratio of basic fuchsin, after 120 minutes visible-light irradiation in the presence of H2O2. In addition, the effect of pH values on photocatalytic activity were also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1073-1076)

Pages:

795-798

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Nano-photocatalytic materials: possibilities and challenges. Adv Mater 2012; 24: 229-51.

DOI: 10.1002/adma.201102752

Google Scholar

[2] Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2012; 13: 169-89.

DOI: 10.1016/j.jphotochemrev.2012.06.001

Google Scholar

[3] Ohko Y, Ando I, Niwa C, Tatsuma T, Yamamura T, Nakashima T, et al. Degradation of bisphenol A in water by TiO2 photocatalyst. Environmental science & technology 2001; 35: 2365-8.

DOI: 10.1021/es001757t

Google Scholar

[4] Nagaveni K, Sivalingam G, Hegde M, Madras G. Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environmental science & technology 2004; 38: 1600-4.

DOI: 10.1021/es034696i

Google Scholar

[5] Bianco Prevot A, Baiocchi C, Brussino MC, Pramauro E, Savarino P, Augugliaro V, et al. Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions. Environmental science & technology 2001; 35: 971-6.

DOI: 10.1021/es000162v

Google Scholar

[6] Mirkhani V, Tangestaninejad S, Moghadam M, Habibi M, Rostami-Vartooni A. Photocatalytic degradation of azo dyes catalyzed by Ag doped TiO2 photocatalyst. Journal of the Iranian Chemical Society 2009; 6: 578-87.

DOI: 10.1007/bf03246537

Google Scholar

[7] Fu Y, Xiong P, Chen H, Sun X, Wang X. High photocatalytic activity of magnetically separable manganese ferrite–graphene heteroarchitectures. Industrial & Engineering Chemistry Research 2012; 51: 725-31.

DOI: 10.1021/ie2026212

Google Scholar

[8] Guo P, Zhang G, Yu J, Li H, Zhao X. Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012; 395: 168-74.

DOI: 10.1016/j.colsurfa.2011.12.027

Google Scholar

[9] Fu W, Yang H, Liu B, Zou G. Preparation and photocatalytic property of anatase TiO_2/MnFe_2O_4 core-shell structure nanoparticles [J]. Acta Materiae Compositae Sinica 2007; 3: 025.

Google Scholar

[10] Jin Q, Fujishima M, Tada H. Visible-Light-Active Iron Oxide-Modified Anatase Titanium(IV) Dioxide. The Journal of Physical Chemistry C 2011; 115: 6478-83.

DOI: 10.1021/jp201131t

Google Scholar

[11] Ohno T, Mitsui T, Matsumura M. Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light. Chemistry Letters 2003; 32: 364-5.

DOI: 10.1246/cl.2003.364

Google Scholar

[12] Jin Q, Ikeda T, Fujishima M, Tada H. Nickel(II) oxide surface-modified titanium(IV) dioxide as a visible-light-active photocatalyst. Chem Commun (Camb) 2011; 47: 8814-6.

DOI: 10.1039/c1cc13096j

Google Scholar

[13] Muramatsu Y, Jin Q, Fujishima M, Tada H. Visible-light-activation of TiO2 nanotube array by the molecular iron oxide surface modification. Applied Catalysis B: Environmental 2012; 119-120: 74-80.

DOI: 10.1016/j.apcatb.2012.02.012

Google Scholar

[14] Nedoloujko A, Kiwi J. TiO2 speciation precluding mineralization of 4-tert-butylpyridine. Accelerated mineralization via Fenton photo-assisted reaction. Water Research 2000; 34: 3277-84.

DOI: 10.1016/s0043-1354(00)00055-5

Google Scholar

[15] Bauer R, Fallmann H. The photo-Fenton oxidation—a cheap and efficient wastewater treatment method. Research on chemical intermediates 1997; 23: 341-54.

DOI: 10.1163/156856797x00565

Google Scholar

[16] Ren P, Zhang J, Deng H. Preparation and microstructure of spinel zinc ferrite ZnFe2O4 by Co-precipitation method. Journal of Wuhan University of Technology-Mater Sci Ed 2009; 24: 927-30.

DOI: 10.1007/s11595-009-6927-y

Google Scholar