Numerical Study of Flow over Sphere at Supercritical Reynolds Numbers

Article Preview

Abstract:

Numerical study of flow over sphere at supercritical Reynolds numbers by SST equations model and DES method based on SST model has been done. The simulation on Re = 9.4×105,1.88×106,2.82×106 were given. Compared with the Results of experiments, the calculations of drag coefficients at Re=1.88×106、2.82×106 agreed well with Achenbach’s results. The trailing vortex structure was shown through the identification method of three dimensional flow field. It had a good agreement with Taneda’s results. The time histories and spectrum characteristics of the drag and the lateral force were investigated by the transient mothod.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-214

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Allen H S. The motion of a sphere in a viscous fluid[J]. Philos. Mag, 1900, 50: 519-534.

Google Scholar

[2] Moller W. Experimentelleuntersuchungzurhydromechanikderkugel[J]. Phys. Zeischrift, 1938, 39(2): 57-80.

Google Scholar

[3] Magarvey R H, Bishop R L. Wakes in liquid-liquid systems[J]. Phys. Fluid, 1961, 4(7): 800-805.

DOI: 10.1063/1.1706409

Google Scholar

[4] Mujumdar A S, Douglas W J M. Eddy shedding from a sphere in turbulent free strams[J]. Int. J. Heat Mass Transfer, 1970, 13: 1627-1629.

DOI: 10.1016/0017-9310(70)90059-1

Google Scholar

[5] Calvert J R. Some experiments on the flow past a sphere[J]. Aero. J. Roy. Aero. Soc, 1972, 76: 248-250.

Google Scholar

[6] Pao H P, Kao T W. Vortex structure in the wake of a sphere[J]. Phys. Fluids, 1977, 20(2): 187-191.

DOI: 10.1063/1.861854

Google Scholar

[7] H. Sakamoto, H. Haniu, A study on vortex shedding from spheres in a uniform flow[J]. Journal of Fluids Engineering. 1990, 112: 386-392.

DOI: 10.1115/1.2909415

Google Scholar

[8] Constantinescu G, Squires K. Numerical investigations of flow over a sphere in the subcritical and supercritical regimes[J]. Physics of Fluids, 2004, 16(5): 1449-1466.

DOI: 10.1063/1.1688325

Google Scholar

[9] I. Rodriguez, O. Lehmkuhl, R. Borrell, et al. Flow dynamics in the turbulent wake of a sphere at sub-critical Reynolds numbers[J]. Computers & Fluids. 2013, 80: 233-243.

DOI: 10.1016/j.compfluid.2012.03.009

Google Scholar

[10] ZouJianfeng, RenAnlu, Deng Jian. Numerical investigations of wake and force for flow past a sphere[J]. Acta Aerodynamica Sinica, 2004, 22(3): 303-308.

Google Scholar

[11] RenAnlu, Li Guangwang, ZouJianfeng. Numerical study of uniform flow over sphere at intermediate Reynolds numbers[J]. Journal of Zhejiang University, 2004, 38(5): 644-648.

Google Scholar

[12] Ma Tieyou. Computational fluid dynamics[M]. Beijing: Beijing School of Aeronautic Press, (1986).

Google Scholar

[13] Achenbach E. Experiments on the flow past spheres at very high Reynolds numbers[J]. Fluid Mech, 1972, 54(3): 565-575.

DOI: 10.1017/s0022112072000874

Google Scholar

[14] Jeong, Hussain. On the identification of a vortex[J]. Fluid. Mech, 1995, 285, 69-94.

Google Scholar

[15] S. Taneda. Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106[J]. Fluid Mech, 1978, 85(1): 187-192.

DOI: 10.1017/s0022112078000580

Google Scholar

[16] Strelets M. Detached Eddy Simulation of Massively Separated[R]. AIAA-01-0879, (2001).

Google Scholar

[17] XueBangmeng, Yang Yong. Technical details in applying DES method to computing supersonic cylinder-base flow[J]. Journal of Northwestern Polytechnical University, 2006, 24(5): 544-547.

Google Scholar