Precipitation Behavior and Magnetic Properties of Nanoscale Particles in a Cu–10 at% Ni–5 at% Co Alloy

Article Preview

Abstract:

We investigated the relationship between the microstructure and magnetic properties of a Cu–10 at% Ni–5 at% Co alloy by using a transmission electron microscope (TEM), a SQUID magnetometer and a magnetic thermo–balance. TEM observations were performed to examine the microstructures of the Cu–Ni–Co specimens annealed at four temperatures between 873 K and 1073 K below and above the Curie point (983 K).Particles with cubic shapes were linearly arranged along the <100> direction of the copper matrix in specimens prepared by isothermal annealing at temperatures below the Curie point, while octahedral precipitates were sparsely formed by annealing above the Curie point. The TEM observations confirmed that the microstructural evolution in the Cu–Ni–Co specimens isothermally annealed at 1023 K. Although coherent cubic particles appeared at the initial stage of annealing, incoherent precipitates were finally formed with increased annealing time at 1023 K. The present SQUID measurements indicated that the curve of coercive force vs. annealing time had a peak at a short annealing period.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-29

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Wada, K. Takamatsu, M. Takeda and M. Takeguchi, Internat. J. Mat. Res. 101, 361 (2010).

Google Scholar

[2] A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten and G. Thomas, Phys. Rev. Lett. 68, 3745 (1992).

DOI: 10.1103/physrevlett.68.3745

Google Scholar

[3] J. Q. Xiao, J. S. Jiang and C. L. Chien, Phys. Rev. Lett. 68, 3749 (1992).

Google Scholar

[4] M. Takeda, K. Inukai, N. Suzuki and G. Shinohara, phys. status solidi A 158, 39 (1996).

Google Scholar

[5] M. Takeda, N. Suzuki, G. Shinohara and T. Endo, phys. status solidi A 168, 27 (1998).

Google Scholar

[6] M. Takeda, H. Yamada, S. Yoshida, K. Shimasue, T. Endo, J. Van Landuyt, phys. status solidi A 168, 436 (2003).

Google Scholar

[7] T. Moriki, S. Kang, M. Takeda and M. Takeguchi, J. Nanosci. Nanotech. 12, 1337 (2012).

Google Scholar

[8] S. Kang, M. Takeda, M. Takeguchi and D. S. Bae, J. Alloys Compd. 496, 196 (2010).

Google Scholar

[9] S. Kang, M. Takeda, Z. Hiroi and M. Takeguchi, Mater. Sci. Forum 654–656, 2342 (2010).

Google Scholar

[10] H. Okamoto HANDBOOK of phase diagrams for binary alloys 2nd edition 266 (2010).

Google Scholar

[11] J. Czub, W. Tokarz, L. Gonde, H. Figiel, J. Mag. Mag. Mat 332, 118–122 (2013).

Google Scholar

[12] N. Kataoka, H. Takeda, J. Echigoya, K. Fukamichi, E. Aoyagi, Y. shimada, H. Okuda, K. Osamura, M. Furusaka, T. Goto, J. Mag. Mag. Mat 140–144, 621–622 (1995).

DOI: 10.1016/0304-8853(94)00724-1

Google Scholar

[13] F. E. Luborsky, J. Appl. Phys. 31, 171S (1961).

Google Scholar

[14] M. Speckmann, H. P. Oepen, H. Ibach Phys. Rev. Lett. 75, 2035(1995).

Google Scholar

[15] G. herzer, IEEE Trans. Magn. 25, 3327–3329 (1989).

Google Scholar

[16] N.I. Vlasova, G.S. Kandauroba, N.N. Shchegoleva J. Mag. Mag. Mat 222. 138–158 (2000).

Google Scholar