Value Chain Analysis for Microalgae-Based CO2 Capture: A Case Study

Article Preview

Abstract:

This primary goal of this study is to facilitate robust strategic decision- making regarding current and future deployment of microalgae-based CO2 capture technology. Based on Porter’s value-chain theory, a chain of activities that are common to all businesses are divided into primary and support activities. This study then attempts designs a microalgae-based CO2 capture value-chain model. This model shows that value drivers of microalgae-based CO2 capture, benefit markedly economic development. According to this value-chain model, one can choose a suitable strategy that to increases economic value. The microalgae-based CO2 capture value chain is a practical task in the development of microalgae-based CO2 capture technologies for thermal power plants. This value- chain model will guide investments and inform deployment decisions for microalgae-based CO2 capture technologies.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1079-1080)

Pages:

558-561

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Demirbas, Energy Conversion and Management 51 (2010) 2738-2749.

Google Scholar

[2] M.S. Wigmosta, A.M. Coleman, R.J. Skaggs, M.H. Huesemann, L.J. Lane, Water Resour. Res. 47 (2011) W00H04.

Google Scholar

[3] J. Catron, G.A. Stainback, P. Dwivedi, J.M. Lhotka, Forest Policy and Economics 28 (2013) 38-43.

DOI: 10.1016/j.forpol.2012.12.003

Google Scholar

[4] H.C. Dekker, Management Accounting Research 14 (2003) 1-23.

Google Scholar

[5] N. Shabani, S. Akhtari, T. Sowlati, Renewable and Sustainable Energy Reviews 23 (2013) 299-311.

DOI: 10.1016/j.rser.2013.03.005

Google Scholar

[6] M.E. Porter, V.E. Millar, Chapter 5 - How Information Gives You Competitive Advantage: The Information Revolution Is Transforming the Nature of Competition, Knowledge and Special Libraries, Butterworth-Heinemann, Boston, 1999, pp.85-103.

DOI: 10.1016/b978-0-7506-7084-5.50007-5

Google Scholar

[7] H. -W. Chen, T. -S. Yang, M. -J. Chen, Y. -C. Chang, C. -Y. Lin, E.I.C. Wang, C. -L. Ho, K. -M. Huang, C. -C. Yu, F. -L. Yang, S. -H. Wu, Y. -C. Lu, L.K. -P. Chao, Bioresource Technology 120 (2012) 256-263.

Google Scholar

[8] S. Li, S. Luo, R. Guo, Bioresource Technology 136 (2013) 267-272.

Google Scholar

[9] H. Shang, J.A. Scott, S.H. Shepherd, G.M. Ross, Chemical Engineering Science 65 (2010) 4591-4597.

Google Scholar

[10] C. Oltra, Energy Policy 39 (2011) 1774-1781.

Google Scholar

[11] E.B. Sydney, W. Sturm, J.C. de Carvalho, V. Thomaz-Soccol, C. Larroche, A. Pandey, C.R. Soccol, Bioresource Technology 101 (2010) 5892-5896.

DOI: 10.1016/j.biortech.2010.02.088

Google Scholar

[12] M.K. Lam, K.T. Lee, A.R. Mohamed, International Journal of Greenhouse Gas Control 10 (2012) 456-469.

Google Scholar