Far-Field Near-Infrared Plasmonic Nanofocusing Effects Based on Nano Metal Structure

Article Preview

Abstract:

We design a new near-infrared plasmonic nanofocusing lens for far field practical applications by using nanonoble metal structure. The constructively interference of near-infrared cylindrical surface plasmon launched by the subwavelength metallic structure can form a subdiffraction-limited focus, which is modulated by the dielectric grating from the near field to the far field. The principle of designing such a far-field nanofocusing lens is elucidated in details. The numerical simulations demonstrated that nanoscale focal spot with full width of half maximum (0.43λ) can be obtained in far field with depth of focus about 2.86λ. This design method paved the road for utilizing the plasmonic lens in high-density optical storage, nanolithography, superresolution optical microscopic imaging, optical measurement, and sensing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-131

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.B. Pendry: Phys. Rev. Lett., Vol. 85(2000), p.3966.

Google Scholar

[2] P.F. Cao, L. Cheng , Y. E Li, X.P. Zhang, Q.Q. Meng and W.J. Kong: PIER, Vol. 107(2010), pp.365-378.

Google Scholar

[3] Zhong Shi, V. Kochergin, and F. Wang: Opt. Lett. , Vol. 17, No. 14(2009), pp.11309-11314.

Google Scholar

[4] Barnes WL, Dereux A, Ebbesen TW: Nature, Vol. 424(2003), 824–830.

Google Scholar

[5] Liu, X., J. Lin, T. F. Jiang, Z. F. Zhu, Q. Q. Zhan, J. Qian, and S. He: PIER, Vol. 128(2012), pp.35-53.

Google Scholar

[6] Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA: Nature, Vol. 391(1998), pp.667-669.

DOI: 10.1038/35570

Google Scholar

[7] N. Fang and X. Zhang: Appl. Phys. Lett. , Vol. 82(2003), 161–163.

Google Scholar

[8] Zou DEA: Chin. Phys. Lett. , Vol. 27(1)(2010), p.17801.

Google Scholar

[9] Zhang M, Du J, Shi H, Yin S, Xia L, Jia B, Gu M, Du C: Opt. Express, Vol. 18(14)(2010), p.14664–14670.

DOI: 10.1364/oe.18.014664

Google Scholar

[10] Liu Z, Steele JM, Srituravanich W, Pikus Y, Sun C, Zhang X: Nano Lett., Vol. 5(9)(2005), p.1726–1729.

DOI: 10.1021/nl051013j

Google Scholar

[11] Yin L, Vlasko-Vlasov VK, Pearson J, Hiller JM, Hua J, Welp U, Brown DE, Kimball CW: Nano Lett., Vol. 5(7)(2005), p.1399–1402.

DOI: 10.1021/nl050723m

Google Scholar

[12] Fu YQ, Luo XG: Appl. Phys. Lett., Vol. 91(6)(2007).

Google Scholar

[13] Fu Y, Du Du C, Zhou W, Lim LEN: Research Letters in Physics,  Vol. 2008(2008).

Google Scholar

[14] Lin Cheng, Pengfei Cao, Yuee Li, Weijie Kong, Xining Zhao, Xiaoping Zhang: Plasmonics, Vol. 7(2012), pp.175-184.

Google Scholar

[15] Pengfei. Cao, Lin. Cheng, Xiaoping. Zhang, Weiping. Lu, Weijie. Kong, and Xuewu. Liang: PIER, Vol. 138(2013), pp.647-660.

Google Scholar

[16] K. Lee, H. Park, J. Kim, G. Kang, and K. Kim: Opt. Express, Vol. 16, No. 3(2008), pp.1711-1718.

Google Scholar

[17] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart: IEEE Trans. Microw. Theory. Tech., Vol. 47, No. 11(1999), p.1084-(2075).

Google Scholar

[18] Ko H, Kim H C, Cheng M.: Appl. Optics , Vol. 49(6)(2010), pp.950-954.

Google Scholar