Atomic Study of Semi-Coherent Interfacial Structure at Fe[110]/TMC[001] (TM=V, Nb and Ta) Interfaces

Article Preview

Abstract:

Interfacial potential of Fe [110]/TMC[001] (TM=V, Nb and Ta) are obtained with adhesive energy and the inversion method. The interfacial stability and tensile fracture properties of the semi-coherent interfaces of the Fe [110]/TMC[001] (TM=V, Nb and Ta) are studied based on the interfacial potentials. Results indicated that Fe/VC interface is more stable than the Fe/TMC (TM=Nb and Ta) interfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

232-236

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Mizuno, I. Tanaka and H. Adachi: Acta Mater. Vol. 46 (1998), p.1637.

Google Scholar

[2] T. Shishidou, J. H. Lee, Y. J. Zhao, A. J. Freeman, and G. B. Olson: J. Apple. Phys. Vol. 93 (2003), p.6876.

Google Scholar

[3] J.H. Jang, C. H. Lee, Y. U. Heo and D. W. Suh: Acta Mater. Vol. 60 (2012), p.208.

Google Scholar

[4] D. H. R. Fors and G. Wahnström: Phys. Rev. B Vol. 82 (2010), p.195410.

Google Scholar

[5] Y. Z. Liu, Y. Jiang, R. Zhou, J. Feng: J. Alloy. Com. Vol. 582 (2014), p.500.

Google Scholar

[6] S. Bağcı, H. M. Tütüncü, S. Duman, and G. P. Srivastava: Phys. Rev. B Vol. 85 (2012), p.085437.

Google Scholar

[7] H. Sawada, S. Taniguchi, K. Kawakami and T. Ozaki: Modelling Simul. Mater. Sci. Eng. Vol. 21 (2013), p.045012.

DOI: 10.1088/0965-0393/21/4/045012

Google Scholar

[8] M. Singh, H. Wiedemeier: J. Mater. Sci. Vol. 32 (1997), p.5749.

Google Scholar

[9] W. Kohn, and L. J. Sham: Phys. Rev. Vol. 140 (1965), p. A1133.

Google Scholar

[10] M. D. Segall, P. J D Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne: J. Phys-Condens. Mat. Vol. 14 (2002), p.2717.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[11] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne: Z. Kristallogr. Vol. 220 (2005), p.567.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[12] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[13] H. J. Monkhors and J. D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[14] J. C. Li, H. Q. Song and J. Shen Mod. Phys. Lett. B (accepted).

Google Scholar

[15] N. Chen: Möbius Inversion in Physcis (World Scientific Publications, Singapore 2010).

Google Scholar

[16] J. Chen and N. Chen, J. Phys-Condens. Mat. Vol. 22 (2010), p.215001.

Google Scholar

[17] Y. Wang and N. Chen, Model. Simul. Mate. SC Vol. 18 (2010), p.065012.

Google Scholar

[18] G. R. Bollinger, S. R. Bahn, N. Agraït, K. W. Jacobsen, and S. Vieira: Phys. Rev. Lett. Vol. 87 (2001), p.026101.

Google Scholar

[19] D. Feng, C. Shi, and G. Liu: Intoduction to Materials Science-An Integrated Approach (Chemical industry Publications, China 2002).

Google Scholar

[20] L. Brian: Fracture of Brittle Solids, 2nd edition (Cambridge University Publications, United Kingdom 1993).

Google Scholar