Advanced Materials Research
Vol. 1087
Vol. 1087
Advanced Materials Research
Vol. 1086
Vol. 1086
Advanced Materials Research
Vol. 1085
Vol. 1085
Advanced Materials Research
Vol. 1084
Vol. 1084
Advanced Materials Research
Vol. 1083
Vol. 1083
Advanced Materials Research
Vol. 1082
Vol. 1082
Advanced Materials Research
Vol. 1081
Vol. 1081
Advanced Materials Research
Vols. 1079-1080
Vols. 1079-1080
Advanced Materials Research
Vol. 1078
Vol. 1078
Advanced Materials Research
Vol. 1077
Vol. 1077
Advanced Materials Research
Vols. 1073-1076
Vols. 1073-1076
Advanced Materials Research
Vols. 1070-1072
Vols. 1070-1072
Advanced Materials Research
Vols. 1065-1069
Vols. 1065-1069
Advanced Materials Research Vol. 1081
Paper Title Page
Abstract: Based on structure and composition characteristics of engine oil, the new algorithm for its Infrared Spectrum (IR) Identification has been put forward. The Hit Quality Index and Related Hit Quality Index are widely used in Infrared Spectrum Identification recently. The two methods don’t take the importance of the variables into consideration and cannot distinguish the unobvious variation in IR spectra. Therefore the diversity weight factor was introduced into the new algorithm to promote its selectivity. The experimental results had shown that the new spectrum similarity evaluation index could distinguish the unobvious spectrum variations and to improve the infrared spectrum identification capability of engine oils.
353
Abstract: A damage identification method is proposed to identify the damage style and the damage parameters. By driving a pair of PZT patches out phase and in phase, the electric admittance of the PZT is obtained. The damage parameters are then identified from the changes of the admittance spectra caused by the appearance of damage. By comparing the identification result, the damage style can be determined and the damage parameters can be obtained. The middle basic particle swarm optimization algorithm is employed as a global search technique to back-calculate the damage. Experiments are carried out on beams. The results demonstrate that the proposed method is able to identify the damage style, and can effectively and reliably locate and quantify the damage in the beam.
358