[1]
G. Park, H. Sohn, C. R. Farrar, and D. J. Inman 2003 Overview of piezoelectric impedance-based health monitoring and path forward The Shock and Vibration Digest 35 451–463.
DOI: 10.1177/05831024030356001
Google Scholar
[2]
V. Giurgiutiu, A. Reynolds, and C. A. Rogers 1999 Experimental investigation of E/M impedance health monitoring for spot welded structural joints Journal of Intelligent Material Systems and Structures 10 802–812.
DOI: 10.1106/n0j5-6uj2-w1gv-q8mc
Google Scholar
[3]
G. Park, A. C. Rutherford, H. Sohn, and C. R. Farrar 2005 An outlier analysis framework for impedance-based structural health monitoring Journal of Sound and Vibration 286 229–250.
DOI: 10.1016/j.jsv.2004.10.013
Google Scholar
[4]
J. W. Ayres, F. Lalande, Z. Chaudhry, and C. A. Rogers 1998 Qualitative impedance-based health monitoring of civil infrastructures Smart Materials and Structures 7 599–605.
DOI: 10.1088/0964-1726/7/5/004
Google Scholar
[5]
G. Park, H. H. Cudney, and D. J. Inman 2001 Feasibility of using impedance-based damage assessment for pipeline structures Earthquake Engineering and Structural Dynamics 30 1463–1474.
DOI: 10.1002/eqe.72
Google Scholar
[6]
V. Giurgiutiu and A. Zagrai 2005 Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method Structural Health Monitoring 4 99–118.
DOI: 10.1177/1475921705049752
Google Scholar
[7]
K. J. Xing and C. -P. Fritzen 2007 Monitoring of growing fatigue damage using the E/M impedance method Key Engineering Materials 347 153–158.
DOI: 10.4028/www.scientific.net/kem.347.153
Google Scholar
[8]
S. W. Shin and T. K. Oh 2009 Application of electro-mechanical impedance sensing technique for online monitoring of strength development in concrete using smart PZT patches Construction and Building Materials 23 1185–1188.
DOI: 10.1016/j.conbuildmat.2008.02.017
Google Scholar
[9]
J. D. R. V. De Moura Jr. and V. Steffen Jr. 2006 Impedance-based health monitoring for aeronautic structures using statistical meta-modeling Journal of Intelligent Material Systems and Structures 17 1023–1036.
DOI: 10.1177/1045389x06063087
Google Scholar
[10]
V Jr Lopes, G Park, H H Cudney, et al. 2000 Impedance based structural health monitoring with artificial neural network. Journal of Intelligent Material Systems and Structures 11 206-214.
DOI: 10.1106/h0ev-7pwm-qyhw-e7vf
Google Scholar
[11]
J. F. Xu, Y. Yang, C. K. Soh. 2004 Electromechanical impedance-based structural health monitoring with evolutionary programming Journal of Aerospace Engineering 17 182–193.
DOI: 10.1061/(asce)0893-1321(2004)17:4(182)
Google Scholar
[12]
Seunghee Park, Daniel J. Inman, Jong-Jae Lee, Chung-Bang Yun. 2008 Piezoelectric Sensor-Based Health Monitoring of Railroad Tracks Using a Two-Step Support Vector Machine Classifier Journal of Infrastructure Systems, 1480-88.
DOI: 10.1061/(asce)1076-0342(2008)14:1(80)
Google Scholar
[13]
Xi Maolong, Sun Jun, Xu Wenbo. 2008 An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position Applied Mathmatics and Computation 205 751-759.
DOI: 10.1016/j.amc.2008.05.135
Google Scholar
[14]
W. Yan, C. W. Lim, J. B. Cai, W. Q. Chen. 2007 An electromechanical impedance approach for quantitative damage detection in Timoshenko beams with piezoelectric patches Smart Materials and Structures 16 1390–1400.
DOI: 10.1088/0964-1726/16/4/054
Google Scholar