Interfacial Thermal Resistance and Thermal Rectification in Graphene with Geometric Variations of Doped Nitrogen: A Molecular Dynamics Study

Article Preview

Abstract:

Using classical non-equilibrium molecular dynamics simulations (NEMD), the interfacial thermal resistance and thermal rectification of nitrogen-doped zigzag graphene (NDZG) are investigated. Two different structural models about nitrogen-doped graphene are constructed. It is found that the interfacial thermal resistance at the location of nitrogen-doping causes severe reduction in thermal conductivity of the NDZG. Thermal rectification of the triangular single-nitrogen-doped graphene (SNDG) decreases with increasing temperature. However, thermal rectification is not detected in the parallel various–nitrogen-doped graphene (VNDG). These results suggest that SNDG might be a promising structure for thermal device.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

338-342

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] BaoWen Li, Lei Wang, Giulio Casati, Phys. Rev. Lett. 93, 184301 (2004).

Google Scholar

[2] D. Segal and A. Nitzan, Phys. Rev. Lett. 94, 034301 (2005).

Google Scholar

[3] Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalengne Teweldebrhan, Feng Miao, and Chun Ning Lau, Nano Lett. 8, 902-907 (2008).

DOI: 10.1021/nl0731872

Google Scholar

[4] Jin-Wu Jiang, Jian-Sheng Wang and Baowen Li, Phys. Rev. B 79, 205418 (2009).

Google Scholar

[5] Nuo Yang, Gang Zhang and Baowen Li, Appl. Phys. Lett. 95, 033107 (2009).

Google Scholar

[6] Xiaoxi Ni, Gang Zhang and Baowen Li, J. Phys.: Condens. Matter 23, 215301 (2011).

Google Scholar

[7] Qing-Xiang Pei, Yong-Wei Zhang, Zhen-Dong Sha and Vivek B. Shenoy, Appl. Phys. Lett. 100, 101901 (2012).

Google Scholar

[8] S. Nosé, J. Chem. Phys. 81, 511 (1984).

Google Scholar

[9] W.G. Hoover, Phys. Rev. A 31, 1695 (1985).

Google Scholar

[10] Ning W, Lanqing X and Hui-Qiong W, Nanotechno.

Google Scholar

[11] logy 22, 105705 (2011).

Google Scholar

[11] Steve Plimpton, J. Comput. Phys. 117, 1-19 (1995).

Google Scholar

[12] S. J. Stuart, A. B. Tutein and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).

Google Scholar

[13] K. Matsunaga, C. Fisher and H. Matsubara, Jpn. J. Appl. Phys. 39, 48 (2000).

Google Scholar

[14] J. Tersoff, Phys. Rev. B 39, 5566 (1989).

Google Scholar

[15] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huan, Zhang Li-Qiang and Xie Fang-Wei, Acta Phys. Sin. 61, 076501 (2012). (in Chinese).

DOI: 10.7498/aps.61.076501

Google Scholar

[16] Jiuning H, Xiulin R, Zhigang J and Chen Y P, AIP Conference Proceedings 1173, 135-138 (2009).

Google Scholar

[17] Nika D L and Pokatilov E P, Phys. Rew. B 79, 155413 (2009).

Google Scholar

[18] B. Li, L. wang and G. Casati, Appl. Phys. Lett. 88, 143501 (2006).

Google Scholar