Reinforcing Epoxy Resin with Polydopamine-Coated Al(OH)3: A Biomimetic Method to Constructing Organic-Inorganic Hybrid Materials

Article Preview

Abstract:

A facile biomimetic method was developed to enhance the interfacial interaction in organic-inorganic hybrid materials. By mimicking mussel adhesive proteins, a monolayer of polydopamine (PD) was constructed on surface of Al (OH)3 particles through a controllable coating pathway. The modified Al (OH)3 (PD-Al (OH)3) was incorporated into an epoxy resin. It is found that the strong interfacial interactions brought by the polydopamine benefits the effective interfacial stress transfer, leading to greatly improved flexural properties of the organic-inorganic hybrid resin.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-68

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.T. Drazal, Advances in polymer science, Springer; Berlin, (1986).

Google Scholar

[2] H.D. Middleton, Composite materials in aircraft structure, Longman, NewYork, (1990).

Google Scholar

[3] D. Könnicke, A. Kühn, T. Mahrholz, M. Sinapius. Polymer nanocomposites based on epoxy resin and ATH as a new flame retardant for CFRP: reparation and thermal characterization, J. Mater. Sci. 46 (2011) 7046–7055.

DOI: 10.1007/s10853-011-5673-7

Google Scholar

[4] M. S. Wang, T. J. Pinnavaia, Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin, Chem. Mater. 6 (1994) 468-474.

DOI: 10.1021/cm00040a022

Google Scholar

[5] K. Wattanakul, H. Manuspiya, N. Yanumet, The adsorption of cationic surfactants on BN surface: Its effects on the thermal conductivity and mechanical properties of BN-epoxy composite, Colloids and Surfaces A: Physicochem. Eng. Aspects 369 (2010).

DOI: 10.1016/j.colsurfa.2010.08.021

Google Scholar

[6] J. Wang, J. Fang, C. Wang, Y. Li, M. Huang. Kinetic study of the stabilizing effect of aluminum trihydroxide on thermal degradation of epoxy resin, e-Polymers, 14 (2014) 133-137.

DOI: 10.1515/epoly-2013-0091

Google Scholar

[7] J. Chen, Shao-Te Liu, Pao-Swu Cheng. Preparation and Characterization of Epoxy/Inorganic Anti-electrostatic Nanocomposites Using Submicrometer Al(OH)3 and Colloid Al2O3, J. Chi. Chem. Soc. 59 (2012) 975-982.

DOI: 10.1002/jccs.201100512

Google Scholar

[8] H. Lee, B.P. Lee, P.B. Messersmith, A reversible wet/dry adhesive inspired by mussels and geckos, Nature, 448 (2007) 338-341.

DOI: 10.1038/nature05968

Google Scholar

[9] H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-Inspired Surface Chemistry for Multifunctional Coatings, Science, 318 (2007) 426-430.

DOI: 10.1126/science.1147241

Google Scholar

[10] M. Yu, J. Hwang, T. J. Deming, Role of l-3, 4-Dihydroxyphenylalanine in Mussel Adhesive Proteins, J. Am. Chem. Soc. 121 (1999) 5825-5826.

DOI: 10.1021/ja990469y

Google Scholar

[11] L.P. Yang, S.L. Phua, J.K.H. Teo, C.L. Toh, S.K. Lau, J. Ma, X.H. Lu. A Biomimetic Approach to Enhancing Interfacial Interactions: Polydopamine-Coated Clay as Reinforcement for Epoxy Resin, ACS Appl. Mater. Interfaces. 3 (2011) 3026-3032.

DOI: 10.1021/am200532j

Google Scholar